Vidi: Large Multimodal Models for Video Understanding and Editing
- URL: http://arxiv.org/abs/2504.15681v2
- Date: Thu, 24 Apr 2025 05:36:55 GMT
- Title: Vidi: Large Multimodal Models for Video Understanding and Editing
- Authors: Vidi Team, Celong Liu, Chia-Wen Kuo, Dawei Du, Fan Chen, Guang Chen, Jiamin Yuan, Lingxi Zhang, Lu Guo, Lusha Li, Longyin Wen, Qingyu Chen, Rachel Deng, Sijie Zhu, Stuart Siew, Tong Jin, Wei Lu, Wen Zhong, Xiaohui Shen, Xin Gu, Xing Mei, Xueqiong Qu,
- Abstract summary: We introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios.<n>The first release focuses on temporal retrieval, identifying the time ranges within the input videos corresponding to a given text query.<n>We also present the VUE-TR benchmark, which introduces five key advancements.
- Score: 33.56852569192024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than videos of existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
Related papers
- SynopGround: A Large-Scale Dataset for Multi-Paragraph Video Grounding from TV Dramas and Synopses [58.488812405557]
Video grounding aims to localize specific natural language queries in an untrimmed video.
We present a large-scale video grounding dataset named SynopGround.
We introduce a more complex setting of video grounding dubbed Multi-Paragraph Video Grounding (MPVG)
arXiv Detail & Related papers (2024-08-03T05:35:13Z) - LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding [41.9477837230283]
LongVideoBench is a question-answering benchmark that features video-language interleaved inputs up to an hour long.
Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes.
We formulate a novel video question-answering task termed referring reasoning.
arXiv Detail & Related papers (2024-07-22T16:00:55Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)<n>We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.<n>We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis [118.08008540513596]
Video-MME is the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis.
We extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models.
Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models.
arXiv Detail & Related papers (2024-05-31T17:59:47Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2 is a new family of video foundation models (FM) that achieve state-of-the-art results in video recognition, video-speech tasks, and video-centric tasks.
Our core design is a progressive training approach that unifies the masked video modeling, cross contrastive learning, and prediction token, scaling up to 6B video size.
arXiv Detail & Related papers (2024-03-22T17:57:42Z) - TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding [20.037781644877388]
TimeChat is a time-sensitive multimodal large language model specifically designed for long video understanding.
Our model incorporates two key architectural contributions: (1) a timestamp-aware frame encoder that binds visual content with the timestamp of each frame, and (2) a sliding video Q-Former that produces a video token sequence of varying lengths.
arXiv Detail & Related papers (2023-12-04T17:09:52Z) - QVHighlights: Detecting Moments and Highlights in Videos via Natural
Language Queries [89.24431389933703]
We present the Query-based Video Highlights (QVHighlights) dataset.
It consists of over 10,000 YouTube videos, covering a wide range of topics.
Each video in the dataset is annotated with: (1) a human-written free-form NL query, (2) relevant moments in the video w.r.t. the query, and (3) five-point scale saliency scores for all query-relevant clips.
arXiv Detail & Related papers (2021-07-20T16:42:58Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.