GIVT: Generative Infinite-Vocabulary Transformers
- URL: http://arxiv.org/abs/2312.02116v4
- Date: Wed, 17 Jul 2024 16:32:09 GMT
- Title: GIVT: Generative Infinite-Vocabulary Transformers
- Authors: Michael Tschannen, Cian Eastwood, Fabian Mentzer,
- Abstract summary: We introduce Generative Infinite-Vocabulary Transformers (GIVT) which generate vector sequences with real-valued entries.
Inspired by the image-generation paradigm of VQ-GAN and MaskGIT, we use GIVT to model the unquantized real-valued latent sequences of a $beta$-VAE.
In class-conditional image generation GIVT outperforms VQ-GAN as well as MaskGIT, and achieves performance competitive with recent latent diffusion models.
- Score: 18.55070896912795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Generative Infinite-Vocabulary Transformers (GIVT) which generate vector sequences with real-valued entries, instead of discrete tokens from a finite vocabulary. To this end, we propose two surprisingly simple modifications to decoder-only transformers: 1) at the input, we replace the finite-vocabulary lookup table with a linear projection of the input vectors; and 2) at the output, we replace the logits prediction (usually mapped to a categorical distribution) with the parameters of a multivariate Gaussian mixture model. Inspired by the image-generation paradigm of VQ-GAN and MaskGIT, where transformers are used to model the discrete latent sequences of a VQ-VAE, we use GIVT to model the unquantized real-valued latent sequences of a $\beta$-VAE. In class-conditional image generation GIVT outperforms VQ-GAN (and improved variants thereof) as well as MaskGIT, and achieves performance competitive with recent latent diffusion models. Finally, we obtain strong results outside of image generation when applying GIVT to panoptic segmentation and depth estimation with a VAE variant of the UViM framework.
Related papers
- Efficient Adaptation of Pre-trained Vision Transformer via Householder Transformation [53.88562288388169]
A common strategy for.
Efficient Fine-Tuning (PEFT) of pre-trained Vision Transformers (ViTs) involves adapting the model to downstream tasks.
We propose a novel PEFT approach inspired by Singular Value Decomposition (SVD) for representing the adaptation matrix.
SVD decomposes a matrix into the product of a left unitary matrix, a diagonal matrix of scaling values, and a right unitary matrix.
arXiv Detail & Related papers (2024-10-30T12:08:30Z) - Speech Modeling with a Hierarchical Transformer Dynamical VAE [23.847366888695266]
We propose to model speech signals with the Hierarchical Transformer DVAE (HiT-DVAE)
We show that HiT-DVAE outperforms several other DVAEs for speech spectrogram modeling, while enabling a simpler training procedure.
arXiv Detail & Related papers (2023-03-07T13:35:45Z) - Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in
Transformer-Based Variational AutoEncoder for Diverse Text Generation [85.5379146125199]
Variational Auto-Encoder (VAE) has been widely adopted in text generation.
We propose TRACE, a Transformer-based recurrent VAE structure.
arXiv Detail & Related papers (2022-10-22T10:25:35Z) - f-DM: A Multi-stage Diffusion Model via Progressive Signal
Transformation [56.04628143914542]
Diffusion models (DMs) have recently emerged as SoTA tools for generative modeling in various domains.
We propose f-DM, a generalized family of DMs which allows progressive signal transformation.
We apply f-DM in image generation tasks with a range of functions, including down-sampling, blurring, and learned transformations.
arXiv Detail & Related papers (2022-10-10T18:49:25Z) - Gophormer: Ego-Graph Transformer for Node Classification [27.491500255498845]
In this paper, we propose a novel Gophormer model which applies transformers on ego-graphs instead of full-graphs.
Specifically, Node2Seq module is proposed to sample ego-graphs as the input of transformers, which alleviates the challenge of scalability.
In order to handle the uncertainty introduced by the ego-graph sampling, we propose a consistency regularization and a multi-sample inference strategy.
arXiv Detail & Related papers (2021-10-25T16:43:32Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - Transformer-based Conditional Variational Autoencoder for Controllable
Story Generation [39.577220559911055]
We investigate large-scale latent variable models (LVMs) for neural story generation with objectives in two threads: generation effectiveness and controllability.
We advocate to revive latent variable modeling, essentially the power of representation learning, in the era of Transformers.
Specifically, we integrate latent representation vectors with a Transformer-based pre-trained architecture to build conditional variational autoencoder (CVAE)
arXiv Detail & Related papers (2021-01-04T08:31:11Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
arXiv Detail & Related papers (2020-05-20T17:25:43Z) - Variational Transformers for Diverse Response Generation [71.53159402053392]
Variational Transformer (VT) is a variational self-attentive feed-forward sequence model.
VT combines the parallelizability and global receptive field computation of the Transformer with the variational nature of the CVAE.
We explore two types of VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of finegrained latent variables.
arXiv Detail & Related papers (2020-03-28T07:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.