Applying the Transformer to Character-level Transduction
- URL: http://arxiv.org/abs/2005.10213v2
- Date: Thu, 28 Jan 2021 16:59:30 GMT
- Title: Applying the Transformer to Character-level Transduction
- Authors: Shijie Wu, Ryan Cotterell, Mans Hulden
- Abstract summary: The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
- Score: 68.91664610425114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transformer has been shown to outperform recurrent neural network-based
sequence-to-sequence models in various word-level NLP tasks. Yet for
character-level transduction tasks, e.g. morphological inflection generation
and historical text normalization, there are few works that outperform
recurrent models using the transformer. In an empirical study, we uncover that,
in contrast to recurrent sequence-to-sequence models, the batch size plays a
crucial role in the performance of the transformer on character-level tasks,
and we show that with a large enough batch size, the transformer does indeed
outperform recurrent models. We also introduce a simple technique to handle
feature-guided character-level transduction that further improves performance.
With these insights, we achieve state-of-the-art performance on morphological
inflection and historical text normalization. We also show that the transformer
outperforms a strong baseline on two other character-level transduction tasks:
grapheme-to-phoneme conversion and transliteration.
Related papers
- Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
We show that while generalized state space models are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context.
arXiv Detail & Related papers (2024-02-01T21:44:11Z) - U-shaped Transformer: Retain High Frequency Context in Time Series
Analysis [0.5710971447109949]
In this paper, we consider the low-pass characteristics of transformers and try to incorporate the advantages of them.
We introduce patch merge and split operation to extract features with different scales and use larger datasets to fully make use of the transformer backbone.
Our experiments demonstrate that the model performs at an advanced level across multiple datasets with relatively low cost.
arXiv Detail & Related papers (2023-07-18T07:15:26Z) - Towards Lightweight Transformer via Group-wise Transformation for
Vision-and-Language Tasks [126.33843752332139]
We introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer.
We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets.
Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks.
arXiv Detail & Related papers (2022-04-16T11:30:26Z) - Gophormer: Ego-Graph Transformer for Node Classification [27.491500255498845]
In this paper, we propose a novel Gophormer model which applies transformers on ego-graphs instead of full-graphs.
Specifically, Node2Seq module is proposed to sample ego-graphs as the input of transformers, which alleviates the challenge of scalability.
In order to handle the uncertainty introduced by the ego-graph sampling, we propose a consistency regularization and a multi-sample inference strategy.
arXiv Detail & Related papers (2021-10-25T16:43:32Z) - Transformer-F: A Transformer network with effective methods for learning
universal sentence representation [8.225067988604351]
The Transformer model is widely used in natural language processing for sentence representation.
In this paper, two approaches are introduced to improve the performance of Transformers.
arXiv Detail & Related papers (2021-07-02T03:20:11Z) - Variational Transformers for Diverse Response Generation [71.53159402053392]
Variational Transformer (VT) is a variational self-attentive feed-forward sequence model.
VT combines the parallelizability and global receptive field computation of the Transformer with the variational nature of the CVAE.
We explore two types of VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of finegrained latent variables.
arXiv Detail & Related papers (2020-03-28T07:48:02Z) - Addressing Some Limitations of Transformers with Feedback Memory [51.94640029417114]
Transformers have been successfully applied to sequential, auto-regressive tasks despite being feedforward networks.
We propose the Feedback Transformer architecture that exposes all previous representations to all future representations.
We demonstrate on a variety of benchmarks in language modeling, machine translation, and reinforcement learning that the increased representation capacity can create small, shallow models with much stronger performance than comparable Transformers.
arXiv Detail & Related papers (2020-02-21T16:37:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.