JarviX: A LLM No code Platform for Tabular Data Analysis and
Optimization
- URL: http://arxiv.org/abs/2312.02213v1
- Date: Sun, 3 Dec 2023 07:03:04 GMT
- Title: JarviX: A LLM No code Platform for Tabular Data Analysis and
Optimization
- Authors: Shang-Ching Liu, ShengKun Wang, Wenqi Lin, Chung-Wei Hsiung, Yi-Chen
Hsieh, Yu-Ping Cheng, Sian-Hong Luo, Tsungyao Chang, Jianwei Zhang
- Abstract summary: JarviX is designed to employ Large Language Models (LLMs) to facilitate an automated guide and execute high-precision data analyzes.
JarviX incorporates an automated machine learning (AutoML) pipeline for predictive modeling.
The efficacy and adaptability of JarviX are substantiated through a series of practical use case studies.
- Score: 2.3501230561204522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we introduce JarviX, a sophisticated data analytics framework.
JarviX is designed to employ Large Language Models (LLMs) to facilitate an
automated guide and execute high-precision data analyzes on tabular datasets.
This framework emphasizes the significance of varying column types,
capitalizing on state-of-the-art LLMs to generate concise data insight
summaries, propose relevant analysis inquiries, visualize data effectively, and
provide comprehensive explanations for results drawn from an extensive data
analysis pipeline. Moreover, JarviX incorporates an automated machine learning
(AutoML) pipeline for predictive modeling. This integration forms a
comprehensive and automated optimization cycle, which proves particularly
advantageous for optimizing machine configuration. The efficacy and
adaptability of JarviX are substantiated through a series of practical use case
studies.
Related papers
- TablePilot: Recommending Human-Preferred Tabular Data Analysis with Large Language Models [44.4199653472754]
We present TablePilot, a pioneering data analysis framework leveraging large language models to autonomously generate comprehensive and superior analytical results.
The framework incorporates key designs in analysis preparation and analysis optimization to enhance accuracy.
We also propose Rec-Align, a novel method to further improve recommendation quality and better align with human preferences.
arXiv Detail & Related papers (2025-03-17T15:16:59Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.
By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.
Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - A new framework for X-ray absorption spectroscopy data analysis based on machine learning: XASDAML [3.26781102547109]
XASDAML is a flexible, machine learning based framework that integrates the entire data-processing workflow.
It supports comprehensive statistical analysis, leveraging methods such as principal component analysis and clustering.
The versatility and effectiveness of XASDAML are exemplified by its application to a copper dataset.
arXiv Detail & Related papers (2025-02-23T17:50:04Z) - MDSF: Context-Aware Multi-Dimensional Data Storytelling Framework based on Large language Model [1.33134751838052]
This paper introduces the Multidimensional Data Storytelling Framework (MDSF) based on large language models for automated insight generation and context-aware storytelling.
The framework incorporates advanced preprocessing techniques, augmented analysis algorithms, and a unique scoring mechanism to identify and prioritize actionable insights.
arXiv Detail & Related papers (2025-01-02T02:35:38Z) - Enriching Tabular Data with Contextual LLM Embeddings: A Comprehensive Ablation Study for Ensemble Classifiers [20.46918103875102]
This study presents a systematic approach to enrich datasets with features derived from large language model embeddings.
We assess the impact of RoBERTa and GPT-2 embeddings on ensemble classifiers, including Random Forest, XGBoost, and CatBoost.
Results indicate that integrating embeddings with traditional numerical and categorical features often enhances predictive performance.
arXiv Detail & Related papers (2024-11-03T17:45:00Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
Data analysis is a crucial analytical process to generate in-depth studies and conclusive insights.
We propose to automatically generate high-quality answer annotations leveraging the code-generation capabilities of LLMs.
Our DACO-RL algorithm is evaluated by human annotators to produce more helpful answers than SFT model in 57.72% cases.
arXiv Detail & Related papers (2024-03-04T22:47:58Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
This survey focuses on the utility of Large Language Models for data annotation and synthesis.
It includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - KAXAI: An Integrated Environment for Knowledge Analysis and Explainable
AI [0.0]
The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation.
The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability.
arXiv Detail & Related papers (2023-12-30T10:20:47Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
We introduce InsightPilot, an automated data exploration system designed to simplify the data exploration process.
InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining.
In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts.
arXiv Detail & Related papers (2023-04-02T07:27:49Z) - Analytical Engines With Context-Rich Processing: Towards Efficient
Next-Generation Analytics [12.317930859033149]
We envision an analytical engine co-optimized with components that enable context-rich analysis.
We aim for a holistic pipeline cost- and rule-based optimization across relational and model-based operators.
arXiv Detail & Related papers (2022-12-14T21:46:33Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Bandit Data-Driven Optimization [62.01362535014316]
There are four major pain points that a machine learning pipeline must overcome in order to be useful in settings.
We introduce bandit data-driven optimization, the first iterative prediction-prescription framework to address these pain points.
We propose PROOF, a novel algorithm for this framework and formally prove that it has no-regret.
arXiv Detail & Related papers (2020-08-26T17:50:49Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.