Large Language Models for Data Annotation and Synthesis: A Survey
- URL: http://arxiv.org/abs/2402.13446v3
- Date: Mon, 02 Dec 2024 20:55:15 GMT
- Title: Large Language Models for Data Annotation and Synthesis: A Survey
- Authors: Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Mansooreh Karami, Jundong Li, Lu Cheng, Huan Liu,
- Abstract summary: This survey focuses on the utility of Large Language Models for data annotation and synthesis.<n>It includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis.
- Score: 49.8318827245266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data annotation and synthesis generally refers to the labeling or generating of raw data with relevant information, which could be used for improving the efficacy of machine learning models. The process, however, is labor-intensive and costly. The emergence of advanced Large Language Models (LLMs), exemplified by GPT-4, presents an unprecedented opportunity to automate the complicated process of data annotation and synthesis. While existing surveys have extensively covered LLM architecture, training, and general applications, we uniquely focus on their specific utility for data annotation. This survey contributes to three core aspects: LLM-Based Annotation Generation, LLM-Generated Annotations Assessment, and LLM-Generated Annotations Utilization. Furthermore, this survey includes an in-depth taxonomy of data types that LLMs can annotate, a comprehensive review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis. Serving as a key guide, this survey aims to assist researchers and practitioners in exploring the potential of the latest LLMs for data annotation, thereby fostering future advancements in this critical field.
Related papers
- Can Frontier LLMs Replace Annotators in Biomedical Text Mining? Analyzing Challenges and Exploring Solutions [0.0]
Large language models (LLMs) can perform various natural language processing (NLP) tasks through in-context learning without relying on supervised data.
We identify three primary challenges for LLMs in biomedical corpora.
Our findings show that frontier LLMs can approach or surpass the performance of state-of-the-art (SOTA) BERT-based models.
arXiv Detail & Related papers (2025-03-05T08:37:10Z) - From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
Large Language Models (LLMs) have been employed for generating entirely new data instances and providing more cost-effective annotations.
This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques.
arXiv Detail & Related papers (2025-02-17T12:58:17Z) - From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research [13.818244562506138]
Large Language Models (LLMs) provide a cost-effective and efficient alternative to human annotation.
This paper introduces the SILICON" (Systematic Inference with LLMs for Information Classification and Notation) workflow.
The workflow integrates established principles of human annotation with systematic prompt optimization and model selection.
arXiv Detail & Related papers (2024-12-19T02:21:41Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - A Survey of Multimodal Large Language Model from A Data-centric Perspective [46.57232264950785]
Multimodal large language models (MLLMs) enhance the capabilities of standard large language models by integrating and processing data from multiple modalities.
Data plays a pivotal role in the development and refinement of these models.
arXiv Detail & Related papers (2024-05-26T17:31:21Z) - Data Augmentation using Large Language Models: Data Perspectives, Learning Paradigms and Challenges [47.45993726498343]
Data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection.
This survey explores the transformative impact of large language models (LLMs) on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond.
arXiv Detail & Related papers (2024-03-05T14:11:54Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Utilising a Large Language Model to Annotate Subject Metadata: A Case
Study in an Australian National Research Data Catalogue [18.325675189960833]
In support of open and reproducible research, there has been a rapidly increasing number of datasets made available for research.
As the availability of datasets increases, it becomes more important to have quality metadata for discovering and reusing them.
This paper proposes to leverage large language models (LLMs) for cost-effective annotation of subject metadata through the LLM-based in-context learning.
arXiv Detail & Related papers (2023-10-17T14:52:33Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.