InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars
- URL: http://arxiv.org/abs/2312.02222v3
- Date: Mon, 27 May 2024 02:54:54 GMT
- Title: InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars
- Authors: Xiaochen Zhao, Jingxiang Sun, Lizhen Wang, Jinli Suo, Yebin Liu,
- Abstract summary: We propose a novel framework that enhances avatar reconstruction performance using an algorithm designed to increase the fidelity from multiple frames.
Our architecture emphasizes pixel-aligned image-to-image translation, mitigating the need to learn correspondences between observation and canonical spaces.
The proposed paradigm demonstrates state-of-the-art performance on one-shot and few-shot avatar animation tasks.
- Score: 40.10906393484584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While high fidelity and efficiency are central to the creation of digital head avatars, recent methods relying on 2D or 3D generative models often experience limitations such as shape distortion, expression inaccuracy, and identity flickering. Additionally, existing one-shot inversion techniques fail to fully leverage multiple input images for detailed feature extraction. We propose a novel framework, \textbf{Incremental 3D GAN Inversion}, that enhances avatar reconstruction performance using an algorithm designed to increase the fidelity from multiple frames, resulting in improved reconstruction quality proportional to frame count. Our method introduces a unique animatable 3D GAN prior with two crucial modifications for enhanced expression controllability alongside an innovative neural texture encoder that categorizes texture feature spaces based on UV parameterization. Differentiating from traditional techniques, our architecture emphasizes pixel-aligned image-to-image translation, mitigating the need to learn correspondences between observation and canonical spaces. Furthermore, we incorporate ConvGRU-based recurrent networks for temporal data aggregation from multiple frames, boosting geometry and texture detail reconstruction. The proposed paradigm demonstrates state-of-the-art performance on one-shot and few-shot avatar animation tasks. Code will be available at https://github.com/XChenZ/invertAvatar.
Related papers
- GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.
Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - FlexiDreamer: Single Image-to-3D Generation with FlexiCubes [20.871847154995688]
FlexiDreamer is a novel framework that directly reconstructs high-quality meshes from multi-view generated images.
Our approach can generate high-fidelity 3D meshes in the single image-to-3D downstream task with approximately 1 minute.
arXiv Detail & Related papers (2024-04-01T08:20:18Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
Multi-view (MV) 3D reconstruction is a promising solution to fuse generated MV images into consistent 3D objects.
However, the generated images usually suffer from inconsistent lighting, misaligned geometry, and sparse views, leading to poor reconstruction quality.
We present a novel 3D reconstruction framework that leverages intrinsic decomposition guidance, transient-mono prior guidance, and view augmentation to cope with the three issues.
arXiv Detail & Related papers (2024-01-29T02:30:31Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - TriPlaneNet: An Encoder for EG3D Inversion [1.9567015559455132]
NeRF-based GANs have introduced a number of approaches for high-resolution and high-fidelity generative modeling of human heads.
Despite the success of universal optimization-based methods for 2D GAN inversion, those applied to 3D GANs may fail to extrapolate the result onto the novel view.
We introduce a fast technique that bridges the gap between the two approaches by directly utilizing the tri-plane representation presented for the EG3D generative model.
arXiv Detail & Related papers (2023-03-23T17:56:20Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.