MoGaFace: Momentum-Guided and Texture-Aware Gaussian Avatars for Consistent Facial Geometry
- URL: http://arxiv.org/abs/2508.01218v1
- Date: Sat, 02 Aug 2025 06:25:51 GMT
- Title: MoGaFace: Momentum-Guided and Texture-Aware Gaussian Avatars for Consistent Facial Geometry
- Authors: Yujian Liu, Linlang Cao, Chuang Chen, Fanyu Geng, Dongxu Shen, Peng Cao, Shidang Xu, Xiaoli Liu,
- Abstract summary: MoGaFace is a novel 3D head avatar modeling framework that continuously refines facial geometry and texture attributes.<n>MoGaFace achieves high-fidelity head avatar reconstruction and significantly improves novel-view synthesis quality.
- Score: 3.0373043721834163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing 3D head avatar reconstruction methods adopt a two-stage process, relying on tracked FLAME meshes derived from facial landmarks, followed by Gaussian-based rendering. However, misalignment between the estimated mesh and target images often leads to suboptimal rendering quality and loss of fine visual details. In this paper, we present MoGaFace, a novel 3D head avatar modeling framework that continuously refines facial geometry and texture attributes throughout the Gaussian rendering process. To address the misalignment between estimated FLAME meshes and target images, we introduce the Momentum-Guided Consistent Geometry module, which incorporates a momentum-updated expression bank and an expression-aware correction mechanism to ensure temporal and multi-view consistency. Additionally, we propose Latent Texture Attention, which encodes compact multi-view features into head-aware representations, enabling geometry-aware texture refinement via integration into Gaussians. Extensive experiments show that MoGaFace achieves high-fidelity head avatar reconstruction and significantly improves novel-view synthesis quality, even under inaccurate mesh initialization and unconstrained real-world settings.
Related papers
- TeGA: Texture Space Gaussian Avatars for High-Resolution Dynamic Head Modeling [52.87836237427514]
Photoreal avatars are seen as a key component in emerging applications in telepresence, extended reality, and entertainment.<n>We present a new high-detail 3D head avatar model that improves upon the state of the art.
arXiv Detail & Related papers (2025-05-08T22:10:27Z) - 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering [8.59572577251833]
We propose a novel regularization method using the gradients of a signed distance function estimated from the Gaussians.<n>We demonstrate the effectiveness of our approach on datasets such as Mip-NeRF360, Tanks and Temples, and Deep-Blending.
arXiv Detail & Related papers (2025-01-14T18:40:33Z) - Learning Topology Uniformed Face Mesh by Volume Rendering for Multi-view Reconstruction [40.45683488053611]
Face meshes in consistent topology serve as the foundation for many face-related applications.
We propose a mesh volume rendering method that enables directly optimizing mesh geometry while preserving topology.
Key innovation lies in spreading sparse mesh features into the surrounding space to simulate radiance field required for volume rendering.
arXiv Detail & Related papers (2024-04-08T15:25:50Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
We introduce a novel approach to creating ultra-realistic head avatars and rendering them in real-time.<n> UV-mapped 3D mesh is utilized to capture sharp and rich textures on smooth surfaces, while 3D Gaussian Splatting is employed to represent complex geometric structures.<n>Experiments that our modeled results exceed those of state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars [40.10906393484584]
We propose a novel framework that enhances avatar reconstruction performance using an algorithm designed to increase the fidelity from multiple frames.
Our architecture emphasizes pixel-aligned image-to-image translation, mitigating the need to learn correspondences between observation and canonical spaces.
The proposed paradigm demonstrates state-of-the-art performance on one-shot and few-shot avatar animation tasks.
arXiv Detail & Related papers (2023-12-03T18:59:15Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.