論文の概要: MedXChat: A Unified Multimodal Large Language Model Framework towards CXRs Understanding and Generation
- arxiv url: http://arxiv.org/abs/2312.02233v2
- Date: Fri, 10 May 2024 03:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 20:17:21.520563
- Title: MedXChat: A Unified Multimodal Large Language Model Framework towards CXRs Understanding and Generation
- Title(参考訳): MedXChat: CXRの理解と生成のための統合マルチモーダル大規模言語モデルフレームワーク
- Authors: Ling Yang, Zhanyu Wang, Zhenghao Chen, Xinyu Liang, Luping Zhou,
- Abstract要約: MLLM(Multimodal Large Language Models)は、様々な画像処理タスクで成功している。
胸部X線(CXR)の理解・生成におけるMLLMsの可能性について検討した。
- 参考スコア(独自算出の注目度): 28.497591315598402
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have shown success in various general image processing tasks, yet their application in medical imaging is nascent, lacking tailored models. This study investigates the potential of MLLMs in improving the understanding and generation of Chest X-Rays (CXRs). We introduce MedXChat, a unified framework facilitating seamless interactions between medical assistants and users for diverse CXR tasks, including text report generation, visual question-answering (VQA), and Text-to-CXR generation. Our MLLMs using natural language as the input breaks task boundaries, maximally simplifying medical professional training by allowing diverse tasks within a single environment. For CXR understanding, we leverage powerful off-the-shelf visual encoders (e.g., ViT) and LLMs (e.g., mPLUG-Owl) to convert medical imagery into language-like features, and subsequently fine-tune our large pre-trained models for medical applications using a visual adapter network and a delta-tuning approach. For CXR generation, we introduce an innovative synthesis approach that utilizes instruction-following capabilities within the Stable Diffusion (SD) architecture. This technique integrates smoothly with the existing model framework, requiring no extra parameters, thereby maintaining the SD's generative strength while also bestowing upon it the capacity to render fine-grained medical images with high fidelity. Through comprehensive experiments, our model demonstrates exceptional cross-task adaptability, displaying adeptness across all three defined tasks. Our MedXChat model and the instruction dataset utilized in this research will be made publicly available to encourage further exploration in the field.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は、様々な画像処理タスクで成功したが、医療画像への応用は初期段階にあり、調整されたモデルが欠如している。
本研究では,胸部X線(CXR)の理解と生成を改善するためのMLLMの可能性について検討した。
MedXChatは、テキストレポート生成、視覚質問応答(VQA)、テキスト・ツー・CXR生成を含む多様なCXRタスクにおいて、医療アシスタントとユーザ間のシームレスな対話を容易にする統合フレームワークである。
自然言語を入力として使用するMLLMは、タスク境界を破り、単一の環境内で多様なタスクを許容することにより、医療専門家のトレーニングを最大限に単純化する。
CXR理解のために、医用画像の言語的特徴に変換するために、強力な市販のビジュアルエンコーダ(eg, ViT)とLLM(eg, mPLUG-Owl)を活用し、ビジュアルアダプタネットワークとデルタチューニングアプローチを用いて、医用アプリケーション用の大規模トレーニング済みモデルを微調整する。
CXR生成には、安定拡散(SD)アーキテクチャ内の命令追従機能を利用する革新的な合成手法を導入する。
この技術は既存のモデルフレームワークとスムーズに統合され、余分なパラメータを必要とせず、SDの生成強度を維持しつつ、高い忠実度で微細な医用画像を描画する能力を与える。
総合的な実験を通して、我々のモデルは3つの定義されたタスクの全てに適応性を示す、例外的なクロスタスク適応性を示す。
我々のMedXChatモデルと本研究で利用した命令データセットを公開して,この分野のさらなる探索を奨励する。
関連論文リスト
- M4CXR: Exploring Multi-task Potentials of Multi-modal Large Language Models for Chest X-ray Interpretation [0.0]
M4CXRは胸部X線(CXR)の解釈を強化するために設計された多モード大言語モデル(LLM)である。
このモデルは、医療報告生成(MRG)、視覚的接地、視覚的質問応答(VQA)などの複数のタスクをサポートする。
M4CXRは、チェーン・オブ・シークレット・プロンプト戦略を用いて、MRGの最先端の臨床精度を達成する。
論文 参考訳(メタデータ) (2024-08-29T02:12:58Z) - Effectively Fine-tune to Improve Large Multimodal Models for Radiology
Report Generation [8.788649244412591]
大規模言語モデル(LLM)は最近、印象的な機能を示しています。
ソフトな視覚的プロンプトとしてLLMのテキスト埋め込み空間に視覚的特徴を合わせるための,シンプルで効果的な2段階微調整プロトコルを提案する。
OpenLLaMA-7Bのフレームワークは、ドメイン固有の事前トレーニングを使わずに最先端のパフォーマンスを実現した。
論文 参考訳(メタデータ) (2023-12-03T20:42:38Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
モデル重み、チューニングタスク、視覚埋め込みを併用した多目的多モード大言語モデル(MLLM)を提案する。
提案したジョイントミキシングに基づいて,高解像度画像のきめ細かい外観をより正確に捉えるための効率的な手法を提案する。
今後のMLLM研究におけるジョイントミキシングの探求に光を当てることを願っている。
論文 参考訳(メタデータ) (2023-11-13T18:59:47Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
ラベル付き医用画像-レポートペアの不足は、ディープニューラルネットワークや大規模ニューラルネットワークの開発において大きな課題となっている。
本稿では,コンピュータビジョンと自然言語処理の基盤モデル (FM) として,市販の汎用大規模事前学習モデルのカスタマイズを提案する。
論文 参考訳(メタデータ) (2023-06-09T03:02:36Z) - LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation [51.08810811457617]
LLMにおける視覚言語アライメントは、マルチモーダル推論とビジュアルIOを可能にするために活発に研究されている。
医用画像の視覚言語能力を得るために,テキストのみにLLMを指導する手法を開発した。
このアプローチで訓練したLLM-CXRは,CXR理解タスクと生成タスクの両方において,より優れた画像テキストアライメントを示す。
論文 参考訳(メタデータ) (2023-05-19T07:44:39Z) - Multi-task Paired Masking with Alignment Modeling for Medical
Vision-Language Pre-training [55.56609500764344]
本稿では,マルチタスク・ペアド・マスキング・アライメント(MPMA)に基づく統合フレームワークを提案する。
また, メモリ拡張クロスモーダルフュージョン (MA-CMF) モジュールを導入し, 視覚情報を完全統合し, レポート再構築を支援する。
論文 参考訳(メタデータ) (2023-05-13T13:53:48Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。