論文の概要: Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding
- arxiv url: http://arxiv.org/abs/2312.02244v3
- Date: Mon, 15 Apr 2024 10:06:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 23:07:44.940582
- Title: Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding
- Title(参考訳): ゼロショット3Dポイントクラウド理解のための幾何学的集約
- Authors: Guofeng Mei, Luigi Riz, Yiming Wang, Fabio Poiesi,
- Abstract要約: ゼロショット3Dポイントクラウド理解は2Dビジョンランゲージモデル(VLM)によって達成できる
既存の戦略は、ヴィジュアル・ランゲージ・モデル(Vision-Language Model)をレンダリングまたはキャプチャされた2Dピクセルから3Dポイントにマッピングし、固有かつ表現可能な雲の幾何学構造を見渡す。
本稿では, 点雲の3次元幾何学的構造を利用して, 移動したビジョン・ランゲージモデルの品質を向上させるための, 初となるトレーニングフリーアグリゲーション手法を提案する。
- 参考スコア(独自算出の注目度): 11.416392706435415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot 3D point cloud understanding can be achieved via 2D Vision-Language Models (VLMs). Existing strategies directly map Vision-Language Models from 2D pixels of rendered or captured views to 3D points, overlooking the inherent and expressible point cloud geometric structure. Geometrically similar or close regions can be exploited for bolstering point cloud understanding as they are likely to share semantic information. To this end, we introduce the first training-free aggregation technique that leverages the point cloud's 3D geometric structure to improve the quality of the transferred Vision-Language Models. Our approach operates iteratively, performing local-to-global aggregation based on geometric and semantic point-level reasoning. We benchmark our approach on three downstream tasks, including classification, part segmentation, and semantic segmentation, with a variety of datasets representing both synthetic/real-world, and indoor/outdoor scenarios. Our approach achieves new state-of-the-art results in all benchmarks. Our approach operates iteratively, performing local-to-global aggregation based on geometric and semantic point-level reasoning. Code and dataset are available at https://luigiriz.github.io/geoze-website/
- Abstract(参考訳): ゼロショット3Dポイントクラウド理解は、VLM(2D Vision-Language Models)によって実現される。
既存の戦略は、ヴィジュアル・ランゲージ・モデル(Vision-Language Model)をレンダリングまたはキャプチャされた2Dピクセルから3Dポイントにマッピングし、固有かつ表現可能な雲の幾何学構造を見渡す。
幾何学的に類似している領域や近縁な領域は、意味情報を共有する可能性が高いため、ポイントクラウドの理解を促進するために利用することができる。
そこで本研究では, 点雲の3次元幾何構造を利用して, 移動したビジョン・ランゲージモデルの品質を向上する, 初めての学習自由集約手法を提案する。
提案手法は,幾何学的および意味的点レベルの推論に基づいて,局所的・言語的集合を反復的に行う。
我々は、分類、部分のセグメンテーション、セマンティックセグメンテーションを含む3つの下流タスクに対するアプローチを、合成/実世界のシナリオと屋内/屋外シナリオの両方を表すさまざまなデータセットでベンチマークした。
提案手法は,すべてのベンチマークにおいて新しい最先端結果を実現する。
提案手法は,幾何学的および意味的点レベルの推論に基づいて,局所的・言語的集合を反復的に行う。
コードとデータセットはhttps://luigiriz.github.io/geoze-website/で公開されている。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation [19.706172244951116]
本稿では,U3DS$3$について,総合的な3Dシーンに対して,完全に教師なしのポイントクラウドセグメンテーションに向けたステップとして提示する。
提案手法の最初のステップは,各シーンの幾何学的特徴に基づいてスーパーポイントを生成することである。
次に、空間クラスタリングに基づく手法を用いて学習プロセスを行い、次いで、クラスタセントロイドに応じて生成された擬似ラベルを用いて反復的なトレーニングを行う。
論文 参考訳(メタデータ) (2023-11-10T12:05:35Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Dynamic Clustering Transformer Network for Point Cloud Segmentation [23.149220817575195]
動的クラスタリングトランスネットワーク(DCTNet)と呼ばれる新しい3Dポイントクラウド表現ネットワークを提案する。
エンコーダ-デコーダアーキテクチャがあり、ローカルとグローバルの両方の機能学習が可能である。
提案手法は,オブジェクトベースデータセット(ShapeNet),都市ナビゲーションデータセット(Toronto-3D),マルチスペクトルLiDARデータセットを用いて評価した。
論文 参考訳(メタデータ) (2023-05-30T01:11:05Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
本稿では,CAGroup3Dという新しい2段階完全スパース3Dオブジェクト検出フレームワークを提案する。
提案手法は,まず,オブジェクト表面のボクセル上でのクラス認識型局所群戦略を活用することによって,高品質な3D提案を生成する。
不正なボクセルワイドセグメンテーションにより欠落したボクセルの特徴を回復するために,完全にスパースな畳み込み型RoIプールモジュールを構築した。
論文 参考訳(メタデータ) (2022-10-09T13:38:48Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
ポイントクラウドセマンティックセグメンテーションのためのSemAffiNetを提案する。
我々はScanNetV2とNYUv2データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-26T17:00:23Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
グラフニューラルネットワークの一般枠組みにおける点表現と局所近傍グラフ構築の改善を提案する。
提案されたネットワークは、トレーニングの収束を高速化する。
分類のための40%のより少ないエポック。
論文 参考訳(メタデータ) (2021-03-28T21:34:59Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
3次元画像処理のためのGDANet(Geometry-Disentangled Attention Network)を提案する。
GDANetは、点雲を3Dオブジェクトの輪郭と平らな部分に切り離し、それぞれ鋭い変化成分と穏やかな変化成分で表される。
3Dオブジェクトの分類とセグメンテーションベンチマークの実験は、GDANetがより少ないパラメータで最先端の処理を実現していることを示している。
論文 参考訳(メタデータ) (2020-12-20T13:35:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。