論文の概要: GNN2R: Weakly-Supervised Rationale-Providing Question Answering over
Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2312.02317v3
- Date: Sat, 20 Jan 2024 21:16:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 19:50:36.769310
- Title: GNN2R: Weakly-Supervised Rationale-Providing Question Answering over
Knowledge Graphs
- Title(参考訳): GNN2R:知識グラフに関する質問に対する回答
- Authors: Ruijie Wang, Luca Rossetto, Michael Cochez, Abraham Bernstein
- Abstract要約: 本稿では,グラフニューラルネットワークを用いた2段階推論モデル(GNN2R)を提案する。
GNN2Rは、最終回答の根拠として最終回答と推論部分グラフの両方を、弱い監督力で効率的に提供することができる。
- 参考スコア(独自算出の注目度): 13.496565392976292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most current methods for multi-hop question answering (QA) over knowledge
graphs (KGs) only provide final conclusive answers without explanations, such
as a set of KG entities that is difficult for normal users to review and
comprehend. This issue severely limits the application of KG-based QA in
real-world scenarios. However, it is non-trivial to solve due to two
challenges: First, annotations of reasoning chains of multi-hop questions,
which could serve as supervision for explanation generation, are usually
lacking. Second, it is difficult to maintain high efficiency when explicit KG
triples need to be retrieved to generate explanations. In this paper, we
propose a novel Graph Neural Network-based Two-Step Reasoning model (GNN2R) to
solve this issue. GNN2R can provide both final answers and reasoning subgraphs
as a rationale behind final answers efficiently with only weak supervision that
is available through question-final answer pairs. We extensively evaluated
GNN2R with detailed analyses in experiments. The results demonstrate that, in
terms of effectiveness, efficiency, and quality of generated explanations,
GNN2R outperforms existing state-of-the-art methods that are applicable to this
task. Our code and pre-trained models are available at
https://github.com/ruijie-wang-uzh/GNN2R.
- Abstract(参考訳): 知識グラフ (KGs) 上のマルチホップ質問応答 (QA) のほとんどの手法は、通常のユーザがレビューし理解することが難しいKGエンティティのセットなど、説明なしで最終決定的な回答しか提供しない。
この問題は現実世界のシナリオにおけるKGベースのQAの適用を厳しく制限する。
第一に、説明生成の監督として機能するマルチホップ質問の推論連鎖の注釈は、通常不足している。
第二に、説明を生成するために明示的なKGトリプルを回収する必要がある場合、高い効率を維持することは困難である。
本稿では,グラフニューラルネットワークを用いた2段階推論モデル(GNN2R)を提案する。
GNN2Rは、最終回答と推論部分グラフの両方を、質問-最終回答ペアを通して利用できる弱い監督のみを効率的に行うための根拠として提供することができる。
実験において, GNN2Rの詳細な解析を行った。
その結果、生成した説明の有効性、効率、品質の点で、GNN2Rは、この課題に適用可能な既存の最先端手法よりも優れていることが示された。
私たちのコードと事前トレーニングされたモデルは、https://github.com/ruijie-wang-uzh/gnn2rで利用可能です。
関連論文リスト
- GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning [21.057810495833063]
本稿では,LLMの言語理解能力とGNNの推論能力を組み合わせた検索強化世代(RAG)形式の新しい手法であるGNN-RAGを紹介する。
我々のGNN-RAGフレームワークでは、GNNはグラフ情報を抽出するために高密度なサブグラフ推論器として機能する。
実験により、GNN-RAGは2つの広く使用されているKGQAベンチマークで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-05-30T15:14:24Z) - View-based Explanations for Graph Neural Networks [27.19300566616961]
本稿では,表現のためのグラフビューを生成する新しいパラダイムであるGVEXを提案する。
この戦略は近似比が1/2であることを示す。
第2のアルゴリズムは、インプットノードストリームへの単一パスをバッチで実行し、説明ビューを漸進的に維持する。
論文 参考訳(メタデータ) (2024-01-04T06:20:24Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - Neural-Symbolic Models for Logical Queries on Knowledge Graphs [17.290758383645567]
両世界の利点を享受するニューラルシンボリックモデルであるグラフニューラルネットワーククエリ実行器(GNN-QE)を提案する。
GNN-QEは複雑なFOLクエリを、ファジィ集合上の関係投影と論理演算に分解する。
3つのデータセットの実験により、GNN-QEはFOLクエリに応答する以前の最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-05-16T18:39:04Z) - Improving Question Answering over Knowledge Graphs Using Graph
Summarization [0.2752817022620644]
キーとなる考え方は、知識グラフの質問やエンティティを低次元の埋め込みとして表現することである。
本稿では,リカレント畳み込みニューラルネットワーク(RCNN)とGCNを用いたグラフ要約手法を提案する。
提案手法は,KGQAでは解答が不確実な数で得られない問題に対処するために用いられる。
論文 参考訳(メタデータ) (2022-03-25T10:57:10Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - Graph-Based Tri-Attention Network for Answer Ranking in CQA [56.42018099917321]
本稿では,グラフに基づく新しい三者関係ネットワーク,すなわちGTANを提案し,回答ランキングのスコアを生成する。
実世界の3つのCQAデータセットの実験では、GTANは最先端の回答ランキング法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2021-03-05T10:40:38Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
知識グラフ(KG)質問生成(QG)は,KGから自然言語質問を生成することを目的とする。
本研究は,KGサブグラフから質問を生成し,回答をターゲットとする,より現実的な環境に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T15:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。