An Evaluation Framework for Mapping News Headlines to Event Classes in a
Knowledge Graph
- URL: http://arxiv.org/abs/2312.02334v1
- Date: Mon, 4 Dec 2023 20:42:26 GMT
- Title: An Evaluation Framework for Mapping News Headlines to Event Classes in a
Knowledge Graph
- Authors: Steve Fonin Mbouadeu, Martin Lorenzo, Ken Barker, Oktie Hassanzadeh
- Abstract summary: We present a methodology for creating a benchmark dataset of news headlines mapped to event classes in Wikidata.
We use the dataset to study two classes of unsupervised methods for this task.
We present the results of our evaluation, lessons learned, and directions for future work.
- Score: 3.9742873618618275
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Mapping ongoing news headlines to event-related classes in a rich knowledge
base can be an important component in a knowledge-based event analysis and
forecasting solution. In this paper, we present a methodology for creating a
benchmark dataset of news headlines mapped to event classes in Wikidata, and
resources for the evaluation of methods that perform the mapping. We use the
dataset to study two classes of unsupervised methods for this task: 1)
adaptations of classic entity linking methods, and 2) methods that treat the
problem as a zero-shot text classification problem. For the first approach, we
evaluate off-the-shelf entity linking systems. For the second approach, we
explore a) pre-trained natural language inference (NLI) models, and b)
pre-trained large generative language models. We present the results of our
evaluation, lessons learned, and directions for future work. The dataset and
scripts for evaluation are made publicly available.
Related papers
- Contextuality Helps Representation Learning for Generalized Category Discovery [5.885208652383516]
This paper introduces a novel approach to Generalized Category Discovery (GCD) by leveraging the concept of contextuality.
Our model integrates two levels of contextuality: instance-level, where nearest-neighbor contexts are utilized for contrastive learning, and cluster-level, employing contrastive learning.
The integration of the contextual information effectively improves the feature learning and thereby the classification accuracy of all categories.
arXiv Detail & Related papers (2024-07-29T07:30:41Z) - Assessing In-context Learning and Fine-tuning for Topic Classification of German Web Data [3.2771631221674333]
We model the detection of topic-related content as a binary classification task.
Using only a few hundred annotated data points per topic, we detect content related to three German policies.
arXiv Detail & Related papers (2024-07-23T14:31:59Z) - Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Annotation Error Detection: Analyzing the Past and Present for a More
Coherent Future [63.99570204416711]
We reimplement 18 methods for detecting potential annotation errors and evaluate them on 9 English datasets.
We define a uniform evaluation setup including a new formalization of the annotation error detection task.
We release our datasets and implementations in an easy-to-use and open source software package.
arXiv Detail & Related papers (2022-06-05T22:31:45Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - On the Evaluation of Commit Message Generation Models: An Experimental
Study [33.19314967188712]
Commit messages are natural language descriptions of code changes, which are important for program understanding and maintenance.
Various approaches utilizing generation or retrieval techniques have been proposed to automatically generate commit messages.
This paper conducts a systematic and in-depth analysis of the state-of-the-art models and datasets.
arXiv Detail & Related papers (2021-07-12T12:38:02Z) - Recognition and Processing of NATOM [0.0]
This paper shows how to process the NOTAM (Notice to Airmen) data of the field in civil aviation.
For the original data of the NOTAM, there is a mixture of Chinese and English, and the structure is poor.
Using Glove word vector methods to represent the data for using a custom mapping vocabulary.
arXiv Detail & Related papers (2021-04-29T10:12:00Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
We study the problem of learning localization model on target classes with weakly supervised image labels.
In this work, we argue that learning only an objectness function is a weak form of knowledge transfer.
Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function.
arXiv Detail & Related papers (2020-03-18T17:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.