MEDPSeg: Hierarchical polymorphic multitask learning for the segmentation of ground-glass opacities, consolidation, and pulmonary structures on computed tomography
- URL: http://arxiv.org/abs/2312.02365v2
- Date: Mon, 25 Mar 2024 23:52:15 GMT
- Title: MEDPSeg: Hierarchical polymorphic multitask learning for the segmentation of ground-glass opacities, consolidation, and pulmonary structures on computed tomography
- Authors: Diedre S. Carmo, Jean A. Ribeiro, Alejandro P. Comellas, Joseph M. Reinhardt, Sarah E. Gerard, LetÃcia Rittner, Roberto A. Lotufo,
- Abstract summary: MEDPSeg learns from heterogeneous chest CT targets through hierarchical polymorphic multitask learning (HPML)
We show PML enabling new state-of-the-art performance for GGO and consolidation segmentation tasks.
In addition, MEDPSeg simultaneously performs segmentation of the lung parenchyma, airways, pulmonary artery, and lung lesions, all in a single forward prediction.
- Score: 37.119000111386924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic response highlighted the potential of deep learning methods in facilitating the diagnosis, prognosis and understanding of lung diseases through automated segmentation of pulmonary structures and lesions in chest computed tomography (CT). Automated separation of lung lesion into ground-glass opacity (GGO) and consolidation is hindered due to the labor-intensive and subjective nature of this task, resulting in scarce availability of ground truth for supervised learning. To tackle this problem, we propose MEDPSeg. MEDPSeg learns from heterogeneous chest CT targets through hierarchical polymorphic multitask learning (HPML). HPML explores the hierarchical nature of GGO and consolidation, lung lesions, and the lungs, with further benefits achieved through multitasking airway and pulmonary artery segmentation. Over 6000 volumetric CT scans from different partially labeled sources were used for training and testing. Experiments show PML enabling new state-of-the-art performance for GGO and consolidation segmentation tasks. In addition, MEDPSeg simultaneously performs segmentation of the lung parenchyma, airways, pulmonary artery, and lung lesions, all in a single forward prediction, with performance comparable to state-of-the-art methods specialized in each of those targets. Finally, we provide an open-source implementation with a graphical user interface at https://github.com/MICLab-Unicamp/medpseg.
Related papers
- Automatic segmentation of lung findings in CT and application to Long
COVID [38.69538648742266]
S-MEDSeg is a deep learning based approach for accurate segmentation of lung lesions in chest CT images.
S-MEDSeg combines a pre-trained EfficientNet backbone, bidirectional feature pyramid network, and modern network advancements.
arXiv Detail & Related papers (2023-10-13T23:42:43Z) - MESAHA-Net: Multi-Encoders based Self-Adaptive Hard Attention Network
with Maximum Intensity Projections for Lung Nodule Segmentation in CT Scan [6.266053305874546]
We propose an efficient end-to-end framework, the multi-encoder-based self-adaptive hard attention network (MESAHA-Net) for precise lung nodule segmentation in CT scans.
MESAHA-Net iteratively performs slice-by-slice 2D segmentation of lung nodules, focusing on the nodule region in each slice to generate 3D segmentation of lung nodules.
The proposed framework has been evaluated on the LIDC-IDRI dataset, the largest publicly available dataset for lung nodule segmentation.
arXiv Detail & Related papers (2023-04-04T07:05:15Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
Lung cancer is the leading cause of cancer death worldwide.
Current pulmonary nodule detection methods are usually domain-specific.
We propose a slice grouped domain attention (SGDA) module to enhance the generalization capability of the pulmonary nodule detection networks.
arXiv Detail & Related papers (2023-03-07T03:17:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - CT Image Segmentation for Inflamed and Fibrotic Lungs Using a
Multi-Resolution Convolutional Neural Network [6.177921466996229]
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities.
A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network.
The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation.
arXiv Detail & Related papers (2020-10-16T18:25:59Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.