Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs
- URL: http://arxiv.org/abs/2105.05204v1
- Date: Tue, 11 May 2021 17:10:25 GMT
- Title: Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs
- Authors: Marc Boubnovski Martell, Mitchell Chen, Kristofer Linton-Reid, Joram
M. Posma, Susan J Copley, Eric O. Aboagye
- Abstract summary: Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
- Score: 0.19573380763700707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated lobar segmentation allows regional evaluation of lung disease and
is important for diagnosis and therapy planning. Advanced statistical workflows
permitting such evaluation is a needed area within respiratory medicine; their
adoption remains slow, with poor workflow accuracy. Diseased lung regions often
produce high-density zones on CT images, limiting an algorithm's execution to
specify damaged lobes due to oblique or lacking fissures. This impact motivated
developing an improved machine learning method to segment lung lobes that
utilises tracheobronchial tree information to enhance segmentation accuracy
through the algorithm's spatial familiarity to define lobar extent more
accurately. The method undertakes parallel segmentation of lobes and auxiliary
tissues simultaneously by employing multi-task learning (MTL) in conjunction
with V-Net-attention, a popular convolutional neural network in the imaging
realm. In keeping with the model's adeptness for better generalisation, high
performance was retained in an external dataset of patients with four distinct
diseases: severe lung cancer, COVID-19 pneumonitis, collapsed lungs and Chronic
Obstructive Pulmonary Disease (COPD), even though the training data included
none of these cases. The benefit of our external validation test is
specifically relevant since our choice includes those patients who have
diagnosed lung disease with associated radiological abnormalities. To ensure
equal rank is given to all segmentations in the main task we report the
following performance (Dice score) on a per-segment basis: normal lungs 0.97,
COPD 0.94, lung cancer 0.94, COVID-19 pneumonitis 0.94 and collapsed lung 0.92,
all at p<0.05. Even segmenting lobes with large deformations on CT images, the
model maintained high accuracy. The approach can be readily adopted in the
clinical setting as a robust tool for radiologists.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
Lung cancer is the leading cause of cancer death worldwide.
Current pulmonary nodule detection methods are usually domain-specific.
We propose a slice grouped domain attention (SGDA) module to enhance the generalization capability of the pulmonary nodule detection networks.
arXiv Detail & Related papers (2023-03-07T03:17:49Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - Lung nodules segmentation from CT with DeepHealth toolkit [6.980270783615686]
The goal of this study was to demonstrate the feasibility of Deephealth toolkit including PyECVL and PyEDDL libraries to precisely segment lung nodules.
The results depict accurate segmentation of lung nodules across a wide diameter range and better accuracy over a traditional detection approach.
arXiv Detail & Related papers (2022-08-01T06:54:12Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.