Supervised learning of spatial features with STDP and homeostasis using Spiking Neural Networks on SpiNNaker
- URL: http://arxiv.org/abs/2312.02659v2
- Date: Mon, 24 Jun 2024 22:15:57 GMT
- Title: Supervised learning of spatial features with STDP and homeostasis using Spiking Neural Networks on SpiNNaker
- Authors: Sergio Davies, Andrew Gait, Andrew Rowley, Alessandro Di Nuovo,
- Abstract summary: This paper shows a new method to perform supervised learning on Spiking Neural Networks (SNNs), using Spike Timing Dependent Plasticity (STDP) and homeostasis.
A SNN is trained to recognise one or multiple patterns and performance metrics are extracted to measure the performance of the network.
This method of training an SNN to detect spatial patterns may be applied to pattern recognition in static images or traffic analysis in computer networks.
- Score: 42.057348666938736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Neural Networks (ANN) have gained significant popularity thanks to their ability to learn using the well-known backpropagation algorithm. Conversely, Spiking Neural Networks (SNNs), despite having broader capabilities than ANNs, have always posed challenges in the training phase. This paper shows a new method to perform supervised learning on SNNs, using Spike Timing Dependent Plasticity (STDP) and homeostasis, aiming at training the network to identify spatial patterns. Spatial patterns refer to spike patterns without a time component, where all spike events occur simultaneously. The method is tested using the SpiNNaker digital architecture. A SNN is trained to recognise one or multiple patterns and performance metrics are extracted to measure the performance of the network. Some considerations are drawn from the results showing that, in the case of a single trained pattern, the network behaves as the ideal detector, with 100% accuracy in detecting the trained pattern. However, as the number of trained patterns on a single network increases, the accuracy of identification is linked to the similarities between these patterns. This method of training an SNN to detect spatial patterns may be applied to pattern recognition in static images or traffic analysis in computer networks, where each network packet represents a spatial pattern. It will be stipulated that the homeostatic factor may enable the network to detect patterns with some degree of similarity, rather than only perfectly matching patterns.The principles outlined in this article serve as the fundamental building blocks for more complex systems that utilise both spatial and temporal patterns by converting specific features of input signals into spikes.One example of such a system is a computer network packet classifier, tasked with real-time identification of packet streams based on features within the packet content
Related papers
- Multiway Multislice PHATE: Visualizing Hidden Dynamics of RNNs through Training [6.326396282553267]
Recurrent neural networks (RNNs) are a widely used tool for sequential data analysis, however, they are still often seen as black boxes of computation.
Here, we present Multiway Multislice PHATE (MM-PHATE), a novel method for visualizing the evolution of RNNs' hidden states.
arXiv Detail & Related papers (2024-06-04T05:05:27Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Network Classification Method based on Density Time Evolution Patterns
Extracted from Network Automata [0.0]
We propose alternate sources of information to use as descriptor for the classification, which we denominate as density time-evolution pattern (D-TEP) and state density time-evolution pattern (SD-TEP)
Our results show a significant improvement compared to previous studies at five synthetic network databases and also seven real world databases.
arXiv Detail & Related papers (2022-11-18T15:27:26Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A Study On the Effects of Pre-processing On Spatio-temporal Action
Recognition Using Spiking Neural Networks Trained with STDP [0.0]
It is important to study the behavior of SNNs trained with unsupervised learning methods on video classification tasks.
This paper presents methods of transposing temporal information into a static format, and then transforming the visual information into spikes using latency coding.
We show the effect of the similarity in the shape and speed of certain actions on action recognition with spiking neural networks.
arXiv Detail & Related papers (2021-05-31T07:07:48Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z) - File Classification Based on Spiking Neural Networks [0.5065947993017157]
We propose a system for file classification in large data sets based on spiking neural networks (SNNs)
The proposed system may represent a valid alternative to classical machine learning algorithms for inference tasks.
arXiv Detail & Related papers (2020-04-08T11:50:29Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.