Critical analysis of multiple reentrant localization in an antiferromagnetic helix with transverse electric field: Hopping dimerization-free scenario
- URL: http://arxiv.org/abs/2312.02778v4
- Date: Fri, 29 Nov 2024 10:18:27 GMT
- Title: Critical analysis of multiple reentrant localization in an antiferromagnetic helix with transverse electric field: Hopping dimerization-free scenario
- Authors: Sudin Ganguly, Sourav Chattopadhyay, Kallol Mondal, Santanu K. Maiti,
- Abstract summary: Reentrant localization (RL) traditionally links to the interplay of staggered correlated disorder and hopping dimerization.
Our study demonstrates that hopping dimerization is not a pivotal factor in realizing RL.
Considering a helical magnetic system with antiferromagnetic ordering, we uncover spin-dependent RL at multiple energy regions.
- Score: 0.0
- License:
- Abstract: Reentrant localization (RL), a recently prominent phenomenon, traditionally links to the interplay of staggered correlated disorder and hopping dimerization, as indicated by prior research. Contrary to this paradigm, our present study demonstrates that hopping dimerization is not a pivotal factor in realizing RL. Considering a helical magnetic system with antiferromagnetic ordering, we uncover spin-dependent RL at multiple energy regions, in the {\em absence} of hopping dimerization. This phenomenon persists even in the thermodynamic limit. The correlated disorder in the form of Aubry-Andr\'{e}-Harper model is introduced by applying a transverse electric field to the helical system, circumventing the use of traditional substitutional disorder. We conduct a finite-size scaling analysis on the observed reentrant phases to identify critical points, determine associated critical exponents, and examine the scaling behavior linked to localization transitions. Additionally, we explore the parameter space to identify the conditions under which the reentrant phases occur. Described within a tight-binding framework, present work provides a novel outlook on RL, highlighting the crucial role of electric field, antiferromagnetic ordering, and the helicity of the geometry. Potential applications and experimental realizations of RL phenomena are also explored.
Related papers
- Observation of reentrant metal-insulator transition in a random-dimer
disordered SSH lattice [5.594103291124019]
We present the experimental observation of reentrant localization using an experimentally friendly model, a photonic SSH lattice with random-dimer disorder.
In the presence of correlated on-site potentials, certain eigenstates exhibit extended behavior following the localization transition as the disorder continues to increase.
Our study enriches the understanding of transport in mediums and accentuates the substantial potential of integrated photonics for the simulation of intricate condensed matter physics phenomena.
arXiv Detail & Related papers (2023-07-11T12:25:58Z) - Phenomenon of multiple reentrant localization in a double-stranded helix
with transverse electric field [0.0]
The present work explores the potential for observing multiple reentrant localization behavior in a double-stranded helical (DSH) system.
The DSH system is considered to have hopping dimerization in each strand, while also being subjected to a transverse electric field.
arXiv Detail & Related papers (2023-06-26T06:46:23Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Reentrant Localized Bulk and Localized-Extended Edge in Quasiperiodic
Non-Hermitian Systems [1.4638370614615002]
The localization is one of the active and fundamental research in topology physics.
We propose a novel systematic method to analyze the localization behaviors for the bulk and the edge, respectively.
arXiv Detail & Related papers (2022-07-01T02:49:23Z) - Localization transition induced by programmable disorder [0.24629531282150877]
Many-body localization occurs on a spin-1/2 transverse-field Ising model.
We observe a transition from an ergodic phase to a non-thermal phase for individual energy eigenstates.
We realize the time-independent disordered Ising Hamiltonian experimentally on a D-Wave 2000Q programmable quantum annealer.
arXiv Detail & Related papers (2021-08-15T15:37:32Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Dynamical phase transitions in quantum spin models with
antiferromagnetic long-range interactions [0.0]
Anomalous cusps in the return rate are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions.
For quenches across the quantum critical point, textitregular cusps appear in the return rate and connect to the local order parameter changing sign.
arXiv Detail & Related papers (2021-06-09T18:00:01Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.