Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices
- URL: http://arxiv.org/abs/2507.18818v1
- Date: Thu, 24 Jul 2025 21:39:06 GMT
- Title: Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices
- Authors: Alejandro Lopez-Bezanilla,
- Abstract summary: devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields.<n>We uncover a wealth of abrupt magnetic transitions driven by increasing external magnetic fields within a simple yet effective Ising-model framework.<n>Our results challenge the prevailing view that DS behavior is limited to periodic systems.
- Score: 55.2480439325792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields, traditionally observed in periodic ferromagnetic systems, where the commensurability between spin arrangements, lattice parameters, and external magnetic fields governs abrupt changes in magnetization. Its occurrence in aperiodic, fractal-type systems has remained largely unexplored, despite their natural compatibility with such phenomena. Using a quantum annealing device, we uncover a wealth of abrupt magnetic transitions between spin manifolds driven by increasing external magnetic fields within a simple yet effective Ising-model framework. In contrast to periodic systems, where DS arises from long-range competing interactions, our findings reveal that short-range, purely antiferromagnetic couplings in aperiodic geometries produce equally rich ground-state magnetization patterns. We demonstrate that while magnetic textures are determined by the lattice size, their formation remains remarkably robust and independent of scale, with commensurability emerging locally. Our results challenge the prevailing view that DS behavior is limited to periodic systems and establish quasiperiodic geometries as a natural host for this phenomenon.
Related papers
- Fourth-order quantum master equations reveal that spin-phonon decoherence undercuts long magnetization relaxation times in single-molecule magnets [55.2480439325792]
We numerically implement fourth-order quantum master equations to account for coherence terms and describe the full effect of up to two-phonon processes on spin dynamics.<n>We show that while strong axial magnetic anisotropy ensures slow magnetic relaxation approaching seconds at 77 K, the superposition of Kramers doublets is coherent for less than 10 ns due to a novel two-phonon pure dephasing mechanism.
arXiv Detail & Related papers (2025-07-28T11:13:33Z) - Magnon Nesting in Driven Two-Dimensional Quantum Magnets [0.0]
We find a new class of dynamical quantum instability in driven magnets.<n>This instability leads to emergent enhancement of antiferromagnetic correlations even for purely ferromagnetic microscopic couplings.<n>In sharp contrast to the fermionic case, however, the magnon-driven instability is intrinsically non-equilibrium and fundamentally inaccessible in thermal physics.
arXiv Detail & Related papers (2025-05-15T17:41:44Z) - Controllable and Continuous Quantum Phase Transitions in Intrinsic Magnetic Topological Insulator [50.54133633499971]
We study the intrinsic magnetic topological material MnBi2Te4 in which the heavy n-type doping features are strongly suppressed.<n>Based on angle-resolved photoemission spectroscopy, transport measurements, and first-principles calculations, we reveal two magnetism-induced TPTs.<n>Our work paves the way for the realization of intrinsic magnetic topological states in MnBi2Te4 family and provides an ideal platform for achieving controllable and continuous TPTs.
arXiv Detail & Related papers (2025-03-08T03:46:54Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [33.83310724797305]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.<n>We demonstrate their robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.<n>Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Anisotropy-induced spin parity effects [0.0]
A dichotomy in the physical behavior of a system arises, solely depending on whether the relevant spin quantum number is integral or half-odd integral.
Here, we put forth a simple and general scheme for generating such effects in any spatial dimension through the use of anisotropic interactions.
We demonstrate its utility through a detailed analysis of the magnetization behavior of a specific one-dimensional spin chain model, an anisotropic antiferromagnet in a transverse magnetic field.
arXiv Detail & Related papers (2024-02-29T16:15:43Z) - Unveiling Exotic Magnetic Phases in Fibonacci Quasicrystalline Stacking
of Ferromagnetic Layers through Machine Learning [0.0]
We study a Fibonacci quasicrystalline stacking of ferromagnetic layers, potentially realizable using van der Waals magnetic materials.
We construct a model of this magnetic heterostructure, that displays a complex relationship between geometric frustration and magnetic order in this quasicrystalline system.
We employ a machine learning approach, which proves to be a powerful tool in revealing the complex magnetic behavior of this system.
arXiv Detail & Related papers (2023-07-29T19:03:12Z) - Chiral Pseudo Spin Liquids in Moire Heterostructures [0.0]
We propose multi-layer moire structures in strong external magnetic fields as a novel platform for realizing frustrated Hubbard physics with topological order.
We identify the layer degree of freedom as a pseudo spin and control ring-exchange processes and concurrently quenching the kinetic energy by large external magnetic fields.
We find that this topologically ordered state remains exceptionally stable towards relevant perturbations.
arXiv Detail & Related papers (2022-09-12T18:00:10Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Observation of the Anomalous Hall Effect in a Collinear Antiferromagnet [8.779987820381487]
Time-reversal breaking is the basic physics concept underpinning many magnetic topological phenomena.
A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism.
Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.
arXiv Detail & Related papers (2020-02-20T12:55:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.