Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
- URL: http://arxiv.org/abs/2312.02828v4
- Date: Mon, 23 Sep 2024 17:22:41 GMT
- Title: Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
- Authors: Rajeeva L. Karandikar, M. Vidyasagar,
- Abstract summary: We study the convergence properties of the Gradient Descent (SGD) method for finding a stationary point of an objective function $J(cdot)$.
Our results apply to a class of invex'' functions, which have the property that every stationary point is also a global minimizer.
- Score: 2.0584253077707477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the convergence properties of the Stochastic Gradient Descent (SGD) method for finding a stationary point of a given objective function $J(\cdot)$. The objective function is not required to be convex. Rather, our results apply to a class of ``invex'' functions, which have the property that every stationary point is also a global minimizer. First, it is assumed that $J(\cdot)$ satisfies a property that is slightly weaker than the Kurdyka-Lojasiewicz (KL) condition, denoted here as (KL'). It is shown that the iterations $J(\boldsymbol{\theta}_t)$ converge almost surely to the global minimum of $J(\cdot)$. Next, the hypothesis on $J(\cdot)$ is strengthened from (KL') to the Polyak-Lojasiewicz (PL) condition. With this stronger hypothesis, we derive estimates on the rate of convergence of $J(\boldsymbol{\theta}_t)$ to its limit. Using these results, we show that for functions satisfying the PL property, the convergence rate of both the objective function and the norm of the gradient with SGD is the same as the best-possible rate for convex functions. While some results along these lines have been published in the past, our contributions contain two distinct improvements. First, the assumptions on the stochastic gradient are more general than elsewhere, and second, our convergence is almost sure, and not in expectation. We also study SGD when only function evaluations are permitted. In this setting, we determine the ``optimal'' increments or the size of the perturbations. Using the same set of ideas, we establish the global convergence of the Stochastic Approximation (SA) algorithm under more general assumptions on the measurement error, compared to the existing literature. We also derive bounds on the rate of convergence of the SA algorithm under appropriate assumptions.
Related papers
- A Unified Analysis for Finite Weight Averaging [50.75116992029417]
Averaging iterations of Gradient Descent (SGD) have achieved empirical success in training deep learning models, such as Weight Averaging (SWA), Exponential Moving Average (EMA), and LAtest Weight Averaging (LAWA)
In this paper, we generalize LAWA as Finite Weight Averaging (FWA) and explain their advantages compared to SGD from the perspective of optimization and generalization.
arXiv Detail & Related papers (2024-11-20T10:08:22Z) - Revisiting the Last-Iterate Convergence of Stochastic Gradient Methods [25.831462008050387]
The Gradient Descent (SGD) algorithm has triggered people's interest due to its good performance in practice but lack of theoretical understanding.
It still remains unclear whether the lastiterate convergence can be provably extended to wider composite optimization and non-Euclidean norms.
arXiv Detail & Related papers (2023-12-13T21:41:06Z) - Demystifying the Myths and Legends of Nonconvex Convergence of SGD [17.445810977264067]
gradient descent (SGD) and its variants are the main workhorses for solving large-scale optimization problems.
As our analyses, we addressed certain myths and legends related to the non convergence of the gradient.
arXiv Detail & Related papers (2023-10-19T17:58:59Z) - Randomized Coordinate Subgradient Method for Nonsmooth Composite
Optimization [11.017632675093628]
Coordinate-type subgradient methods for addressing nonsmooth problems are relatively underexplored due to the set of properties of the Lipschitz-type assumption.
arXiv Detail & Related papers (2022-06-30T02:17:11Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
We revisit the problem of finding an approximately stationary point of the average of $n$ smooth and possibly non-color functions.
We generalize the $smallsfcolorgreen$ so that it can provably work with virtually any sampling mechanism.
We provide the most general and most accurate analysis of optimal bound in the smooth non-color regime.
arXiv Detail & Related papers (2022-06-05T21:32:33Z) - Convergence Rates of Stochastic Gradient Descent under Infinite Noise
Variance [14.06947898164194]
Heavy tails emerge in gradient descent (SGD) in various scenarios.
We provide convergence guarantees for SGD under a state-dependent and heavy-tailed noise with a potentially infinite variance.
Our results indicate that even under heavy-tailed noise with infinite variance, SGD can converge to the global optimum.
arXiv Detail & Related papers (2021-02-20T13:45:11Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Almost sure convergence rates for Stochastic Gradient Descent and
Stochastic Heavy Ball [17.33867778750777]
We study gradient descent (SGD) and the heavy ball method (SHB) for the general approximation problem.
For SGD, in the convex and smooth setting, we provide the first emphalmost sure convergence emphrates for a weighted average of the iterates.
arXiv Detail & Related papers (2020-06-14T11:12:05Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.