A Unified Analysis for Finite Weight Averaging
- URL: http://arxiv.org/abs/2411.13169v1
- Date: Wed, 20 Nov 2024 10:08:22 GMT
- Title: A Unified Analysis for Finite Weight Averaging
- Authors: Peng Wang, Li Shen, Zerui Tao, Yan Sun, Guodong Zheng, Dacheng Tao,
- Abstract summary: Averaging iterations of Gradient Descent (SGD) have achieved empirical success in training deep learning models, such as Weight Averaging (SWA), Exponential Moving Average (EMA), and LAtest Weight Averaging (LAWA)
In this paper, we generalize LAWA as Finite Weight Averaging (FWA) and explain their advantages compared to SGD from the perspective of optimization and generalization.
- Score: 50.75116992029417
- License:
- Abstract: Averaging iterations of Stochastic Gradient Descent (SGD) have achieved empirical success in training deep learning models, such as Stochastic Weight Averaging (SWA), Exponential Moving Average (EMA), and LAtest Weight Averaging (LAWA). Especially, with a finite weight averaging method, LAWA can attain faster convergence and better generalization. However, its theoretical explanation is still less explored since there are fundamental differences between finite and infinite settings. In this work, we first generalize SGD and LAWA as Finite Weight Averaging (FWA) and explain their advantages compared to SGD from the perspective of optimization and generalization. A key challenge is the inapplicability of traditional methods in the sense of expectation or optimal values for infinite-dimensional settings in analyzing FWA's convergence. Second, the cumulative gradients introduced by FWA introduce additional confusion to the generalization analysis, especially making it more difficult to discuss them under different assumptions. Extending the final iteration convergence analysis to the FWA, this paper, under a convexity assumption, establishes a convergence bound $\mathcal{O}(\log\left(\frac{T}{k}\right)/\sqrt{T})$, where $k\in[1, T/2]$ is a constant representing the last $k$ iterations. Compared to SGD with $\mathcal{O}(\log(T)/\sqrt{T})$, we prove theoretically that FWA has a faster convergence rate and explain the effect of the number of average points. In the generalization analysis, we find a recursive representation for bounding the cumulative gradient using mathematical induction. We provide bounds for constant and decay learning rates and the convex and non-convex cases to show the good generalization performance of FWA. Finally, experimental results on several benchmarks verify our theoretical results.
Related papers
- Convergence Rate Analysis of LION [54.28350823319057]
LION converges iterations of $cal(sqrtdK-)$ measured by gradient Karush-Kuhn-T (sqrtdK-)$.
We show that LION can achieve lower loss and higher performance compared to standard SGD.
arXiv Detail & Related papers (2024-11-12T11:30:53Z) - Empirical Risk Minimization with Shuffled SGD: A Primal-Dual Perspective
and Improved Bounds [12.699376765058137]
gradient descent (SGD) is perhaps the most prevalent optimization method in modern machine learning.
It is only very recently that SGD with sampling without replacement -- shuffled SGD -- has been analyzed.
We prove fine-grained complexity bounds that depend on the data matrix and are never worse than what is predicted by the existing bounds.
arXiv Detail & Related papers (2023-06-21T18:14:44Z) - A Convergence Theory for Federated Average: Beyond Smoothness [28.074273047592065]
Federated learning enables a large amount of edge computing devices to learn a model without data sharing jointly.
As a leading algorithm in this setting, Federated Average FedAvg, which runs Gradient Descent (SGD) in parallel on local devices, has been widely used.
This paper provides a theoretical convergence study on Federated Learning.
arXiv Detail & Related papers (2022-11-03T04:50:49Z) - From Gradient Flow on Population Loss to Learning with Stochastic
Gradient Descent [50.4531316289086]
Gradient Descent (SGD) has been the method of choice for learning large-scale non-root models.
An overarching paper is providing general conditions SGD converges, assuming that GF on the population loss converges.
We provide a unified analysis for GD/SGD not only for classical settings like convex losses, but also for more complex problems including Retrieval Matrix sq-root.
arXiv Detail & Related papers (2022-10-13T03:55:04Z) - Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect [43.00475513526005]
We consider using Gradient Descent (GD) with a large learning rate on a homogeneous matrix factorization problem.
We prove a convergence theory for constant large learning rates well beyond $2/L$.
We rigorously establish an implicit bias of GD induced by such a large learning rate, termed 'balancing'
arXiv Detail & Related papers (2021-10-07T17:58:21Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - Convergence Rates of Stochastic Gradient Descent under Infinite Noise
Variance [14.06947898164194]
Heavy tails emerge in gradient descent (SGD) in various scenarios.
We provide convergence guarantees for SGD under a state-dependent and heavy-tailed noise with a potentially infinite variance.
Our results indicate that even under heavy-tailed noise with infinite variance, SGD can converge to the global optimum.
arXiv Detail & Related papers (2021-02-20T13:45:11Z) - Linear Last-iterate Convergence in Constrained Saddle-point Optimization [48.44657553192801]
We significantly expand the understanding of last-rate uniqueness for Optimistic Gradient Descent Ascent (OGDA) and Optimistic Multiplicative Weights Update (OMWU)
We show that when the equilibrium is unique, linear lastiterate convergence is achieved with a learning rate whose value is set to a universal constant.
We show that bilinear games over any polytope satisfy this condition and OGDA converges exponentially fast even without the unique equilibrium assumption.
arXiv Detail & Related papers (2020-06-16T20:53:04Z) - Better Theory for SGD in the Nonconvex World [2.6397379133308214]
Large-scale non optimization problems are ubiquitous in modern machine learning.
We perform experiments on the effects of a wide array of synthetic minibatch sizes on the Gradient Descent (SG) problem.
arXiv Detail & Related papers (2020-02-09T09:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.