論文の概要: Expert-guided Bayesian Optimisation for Human-in-the-loop Experimental
Design of Known Systems
- arxiv url: http://arxiv.org/abs/2312.02852v1
- Date: Tue, 5 Dec 2023 16:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 15:08:05.842812
- Title: Expert-guided Bayesian Optimisation for Human-in-the-loop Experimental
Design of Known Systems
- Title(参考訳): エキスパート誘導型ベイズ最適化によるノウンシステムのHuman-in-the-loop実験設計
- Authors: Tom Savage, Ehecatl Antonio del Rio Chanona
- Abstract要約: 我々は,高スループット(バッチ)ベイズ最適化と人類学的決定理論を併用して,ドメインの専門家が最適実験の選択に影響を及ぼすことを可能にする。
我々の方法論は、人間が連続的な選択よりも個別に選択する方が優れているという仮説を利用しており、専門家が重要な早期決定に影響を及ぼすことを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Domain experts often possess valuable physical insights that are overlooked
in fully automated decision-making processes such as Bayesian optimisation. In
this article we apply high-throughput (batch) Bayesian optimisation alongside
anthropological decision theory to enable domain experts to influence the
selection of optimal experiments. Our methodology exploits the hypothesis that
humans are better at making discrete choices than continuous ones and enables
experts to influence critical early decisions. At each iteration we solve an
augmented multi-objective optimisation problem across a number of alternate
solutions, maximising both the sum of their utility function values and the
determinant of their covariance matrix, equivalent to their total variability.
By taking the solution at the knee point of the Pareto front, we return a set
of alternate solutions at each iteration that have both high utility values and
are reasonably distinct, from which the expert selects one for evaluation. We
demonstrate that even in the case of an uninformed practitioner, our algorithm
recovers the regret of standard Bayesian optimisation.
- Abstract(参考訳): ドメインの専門家は、ベイズ最適化のような完全に自動化された意思決定プロセスで見過ごされる貴重な物理的洞察を持っていることが多い。
本稿では,高スループット(バッチ)ベイズ最適化と人類学的決定理論を併用して,ドメインエキスパートが最適実験の選択に影響を及ぼすことを可能にする。
提案手法は,人間は連続的な選択よりも個別の選択が得意であるという仮説を活用し,専門家が初期の決定に重要な影響を与えることを可能にする。
各イテレーションにおいて、拡張多目的最適化問題を複数の代替解にわたって解決し、それらの効用関数値の和とそれらの共分散行列の行列式の両方を最大化する。
パレートフロントの膝端で解を取ることで、高いユーティリティ値を持ち、合理的に区別される各イテレーションで代替解のセットを返し、専門家が評価のために1つを選択する。
非形式な実践者であっても、我々のアルゴリズムは標準的なベイズ最適化の後悔を回復する。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Feature-Based Interpretable Surrogates for Optimization [0.8437187555622164]
本研究では、より一般的な最適化ルールを用いて解釈可能性を高める方法について検討する。
提案したルールは、具体的な解ではなく、共通の特徴を特徴とする解の集合にマップされる。
特に,提案手法が提案するソリューションの品質向上を,既存の解釈可能な最適化サロゲートと比較して実証する。
論文 参考訳(メタデータ) (2024-09-03T13:12:49Z) - Human-Algorithm Collaborative Bayesian Optimization for Engineering Systems [0.0]
我々は、協調ベイズ最適化のためのアプローチを概説することで、データ駆動意思決定ループに人間を再導入する。
我々の手法は、人間は連続的な選択よりも離散的な選択をより効率的に行うことができるという仮説を生かしている。
本稿では, バイオプロセス最適化やリアクトル幾何設計を含む, 応用および数値ケーススタディにまたがるアプローチを実証する。
論文 参考訳(メタデータ) (2024-04-16T23:17:04Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - Discovering Many Diverse Solutions with Bayesian Optimization [7.136022698519586]
信頼領域を用いたランク順ベイズ最適化(ROBOT)を提案する。
ROBOTは、ユーザが特定した多様性基準に従って、多様なハイパフォーマンスソリューションのポートフォリオを見つけることを目的としている。
そこで本研究では,機能評価をほとんど必要とせず,高い性能の多様な解を多数発見できることを示す。
論文 参考訳(メタデータ) (2022-10-20T01:56:38Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Dynamic Multi-objective Ensemble of Acquisition Functions in Batch
Bayesian Optimization [1.1602089225841632]
獲得関数は最適化プロセスにおいて重要な役割を果たす。
3つの取得関数は、その現在のパフォーマンスと過去のパフォーマンスに基づいて、セットから動的に選択される。
進化的多目的アルゴリズムを用いて、そのようなMOPを最適化し、非支配的な解の集合を得ることができる。
論文 参考訳(メタデータ) (2022-06-22T14:09:18Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - An Empirical Study of Assumptions in Bayesian Optimisation [61.19427472792523]
本研究では,ベイズ最適化に固有の従来的および非慣習的仮定を厳密に分析する。
超パラメータチューニングタスクの大多数は、不均一性と非定常性を示すと結論付けている。
これらの発見が実践者およびこの分野のさらなる研究の指針となることを願っている。
論文 参考訳(メタデータ) (2020-12-07T16:21:12Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
実験者は、グローバルな最適な場所に関する知識を得ることができる。
グローバル最適化に関する専門家の事前知識をベイズ最適化に組み込む方法は不明である。
効率の良いベイズ最適化手法は、大域的最適の後方分布の後方サンプリングによって提案されている。
論文 参考訳(メタデータ) (2020-02-26T01:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。