論文の概要: Towards Causal Representations of Climate Model Data
- arxiv url: http://arxiv.org/abs/2312.02858v2
- Date: Wed, 6 Dec 2023 15:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-07 11:52:36.010601
- Title: Towards Causal Representations of Climate Model Data
- Title(参考訳): 気候モデルデータの因果表現に向けて
- Authors: Julien Boussard, Chandni Nagda, Julia Kaltenborn, Charlotte Emilie
Elektra Lange, Philippe Brouillard, Yaniv Gurwicz, Peer Nowack, David Rolnick
- Abstract要約: この研究は因果表現学習の可能性、特に単一パーセンシャル・デコーディング(CDSD)法によるemphCausal Discoveryの可能性を掘り下げるものである。
以上の結果から,CDSDをより解釈可能で堅牢な気候モデルエミュレーションへのステップストーンとして使用するという課題,限界,約束が明らかになった。
- 参考スコア(独自算出の注目度): 18.82507552857727
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Climate models, such as Earth system models (ESMs), are crucial for
simulating future climate change based on projected Shared Socioeconomic
Pathways (SSP) greenhouse gas emissions scenarios. While ESMs are sophisticated
and invaluable, machine learning-based emulators trained on existing simulation
data can project additional climate scenarios much faster and are
computationally efficient. However, they often lack generalizability and
interpretability. This work delves into the potential of causal representation
learning, specifically the \emph{Causal Discovery with Single-parent Decoding}
(CDSD) method, which could render climate model emulation efficient
\textit{and} interpretable. We evaluate CDSD on multiple climate datasets,
focusing on emissions, temperature, and precipitation. Our findings shed light
on the challenges, limitations, and promise of using CDSD as a stepping stone
towards more interpretable and robust climate model emulation.
- Abstract(参考訳): 地球システムモデル(esms)のような気候モデルは、ssp(projected shared socio economic pathways)の温室効果ガス排出シナリオに基づいて将来の気候変動をシミュレーションするために不可欠である。
esmは洗練され、価値が増すが、既存のシミュレーションデータに基づいてトレーニングされた機械学習ベースのエミュレータは、追加の気候シナリオをより早く、計算効率が良い。
しかし、それらはしばしば一般化性と解釈性に欠ける。
この研究は、因果表現学習の可能性、具体的には、気候モデルエミュレーションの効率の良い \textit{and} 解釈をレンダリングできる \emph{Causal Discovery with Single-parent Decoding} (CDSD) 法を掘り下げている。
複数の気候データセット上でCDSDを評価し,排出,温度,降水量に着目した。
以上の結果から,CDSDをより解釈可能で堅牢な気候モデルエミュレーションへのステップストーンとして使用するという課題,限界,約束が明らかになった。
関連論文リスト
- Self Supervised Vision for Climate Downscaling [16.407155686685666]
将来の気候変動研究の予測は、地球の気候システムをシミュレートするコンピュータモデルであるアース・システム・モデル(Earth System Models, ESMs)に基づいている。
ESMは様々な物理システムを統合するためのフレームワークを提供するが、その出力は高解像度シミュレーションの実行とアーカイブに必要な膨大な計算資源に縛られている。
本研究では,モデル最適化に高分解能基底真理データを必要としないESMシミュレーションデータをダウンスケールするディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2024-01-09T10:20:49Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
本稿では,気候データ,特に地域規模での降水量について,より詳細な生成モデルを提案する。
複数のLR気候変数に条件付き拡散確率モデルを用いる。
以上の結果から,下降気候データにおける条件拡散モデルの有効性が示唆された。
論文 参考訳(メタデータ) (2023-12-12T09:39:52Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
本稿では,エネルギー収支モデルの物理温度応答方程式を満たすデータ駆動エミュレータであるFaIRGPを紹介する。
本稿では,FaIRGPを用いて大気上層放射力の推定値を得る方法について述べる。
この研究が、気候エミュレーションにおけるデータ駆動手法の採用の拡大に寄与することを期待している。
論文 参考訳(メタデータ) (2023-07-14T08:43:36Z) - Climate Intervention Analysis using AI Model Guided by Statistical
Physics Principles [6.824166358727082]
変動散逸理論(FDT)として知られる統計物理学の原理を応用した新しい解法を提案する。
利用することで,地球系モデルによって生成された大規模なデータセットに符号化された情報を抽出することができる。
我々のモデルであるAiBEDOは、地球および地域表面の気候に対する放射摂動の複雑なマルチタイム効果を捉えることができる。
論文 参考訳(メタデータ) (2023-02-07T05:09:10Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。