Towards Causal Representations of Climate Model Data
- URL: http://arxiv.org/abs/2312.02858v2
- Date: Wed, 6 Dec 2023 15:52:07 GMT
- Title: Towards Causal Representations of Climate Model Data
- Authors: Julien Boussard, Chandni Nagda, Julia Kaltenborn, Charlotte Emilie
Elektra Lange, Philippe Brouillard, Yaniv Gurwicz, Peer Nowack, David Rolnick
- Abstract summary: This work delves into the potential of causal representation learning, specifically the emphCausal Discovery with Single-parent Decoding (CDSD) method.
Our findings shed light on the challenges, limitations, and promise of using CDSD as a stepping stone towards more interpretable and robust climate model emulation.
- Score: 18.82507552857727
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Climate models, such as Earth system models (ESMs), are crucial for
simulating future climate change based on projected Shared Socioeconomic
Pathways (SSP) greenhouse gas emissions scenarios. While ESMs are sophisticated
and invaluable, machine learning-based emulators trained on existing simulation
data can project additional climate scenarios much faster and are
computationally efficient. However, they often lack generalizability and
interpretability. This work delves into the potential of causal representation
learning, specifically the \emph{Causal Discovery with Single-parent Decoding}
(CDSD) method, which could render climate model emulation efficient
\textit{and} interpretable. We evaluate CDSD on multiple climate datasets,
focusing on emissions, temperature, and precipitation. Our findings shed light
on the challenges, limitations, and promise of using CDSD as a stepping stone
towards more interpretable and robust climate model emulation.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Self Supervised Vision for Climate Downscaling [16.407155686685666]
Future projections for climate change research are based on Earth System Models (ESMs), the computer models that simulate the Earth's climate system.
ESMs provide a framework to integrate various physical systems, but their output is bound by the enormous computational resources required for running and archiving higher-resolution simulations.
In this work, we present a deep-learning model for downscaling ESM simulation data that does not require high-resolution ground truth data for model optimization.
arXiv Detail & Related papers (2024-01-09T10:20:49Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
This paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale.
We employ a denoising diffusion probabilistic model conditioned on multiple LR climate variables.
Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.
arXiv Detail & Related papers (2023-12-12T09:39:52Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
We introduce FaIRGP, a data-driven emulator that satisfies the physical temperature response equations of an energy balance model.
We show how FaIRGP can be used to obtain estimates of top-of-atmosphere radiative forcing.
We hope that this work will contribute to widening the adoption of data-driven methods in climate emulation.
arXiv Detail & Related papers (2023-07-14T08:43:36Z) - Climate Intervention Analysis using AI Model Guided by Statistical
Physics Principles [6.824166358727082]
We propose a novel solution by utilizing a principle from statistical physics known as the Fluctuation-Dissipation Theorem (FDT)
By leveraging, we are able to extract information encoded in a large dataset produced by Earth System Models.
Our model, AiBEDO, is capable of capturing the complex, multi-timescale effects of radiation perturbations on global and regional surface climate.
arXiv Detail & Related papers (2023-02-07T05:09:10Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.