Self Supervised Vision for Climate Downscaling
- URL: http://arxiv.org/abs/2401.09466v1
- Date: Tue, 9 Jan 2024 10:20:49 GMT
- Title: Self Supervised Vision for Climate Downscaling
- Authors: Karandeep Singh, Chaeyoon Jeong, Naufal Shidqi, Sungwon Park, Arjun
Nellikkattil, Elke Zeller, Meeyoung Cha
- Abstract summary: Future projections for climate change research are based on Earth System Models (ESMs), the computer models that simulate the Earth's climate system.
ESMs provide a framework to integrate various physical systems, but their output is bound by the enormous computational resources required for running and archiving higher-resolution simulations.
In this work, we present a deep-learning model for downscaling ESM simulation data that does not require high-resolution ground truth data for model optimization.
- Score: 16.407155686685666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Climate change is one of the most critical challenges that our planet is
facing today. Rising global temperatures are already bringing noticeable
changes to Earth's weather and climate patterns with an increased frequency of
unpredictable and extreme weather events. Future projections for climate change
research are based on Earth System Models (ESMs), the computer models that
simulate the Earth's climate system. ESMs provide a framework to integrate
various physical systems, but their output is bound by the enormous
computational resources required for running and archiving higher-resolution
simulations. For a given resource budget, the ESMs are generally run on a
coarser grid, followed by a computationally lighter $downscaling$ process to
obtain a finer-resolution output. In this work, we present a deep-learning
model for downscaling ESM simulation data that does not require high-resolution
ground truth data for model optimization. This is realized by leveraging
salient data distribution patterns and the hidden dependencies between weather
variables for an $\textit{individual}$ data point at $\textit{runtime}$.
Extensive evaluation with $2$x, $3$x, and $4$x scaling factors demonstrates
that the proposed model consistently obtains superior performance over that of
various baselines. The improved downscaling performance and no dependence on
high-resolution ground truth data make the proposed method a valuable tool for
climate research and mark it as a promising direction for future research.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
This paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale.
We employ a denoising diffusion probabilistic model conditioned on multiple LR climate variables.
Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.
arXiv Detail & Related papers (2023-12-12T09:39:52Z) - Towards Causal Representations of Climate Model Data [18.82507552857727]
This work delves into the potential of causal representation learning, specifically the emphCausal Discovery with Single-parent Decoding (CDSD) method.
Our findings shed light on the challenges, limitations, and promise of using CDSD as a stepping stone towards more interpretable and robust climate model emulation.
arXiv Detail & Related papers (2023-12-05T16:13:34Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
We train two "loosely conditioned" Generative Adversarial Networks (GANs) that emulate daily precipitation output from a fully coupled Earth system model.
GANs are trained to producetemporal samples: 32 days of precipitation over a 64x128 regular grid discretizing the globe.
Our trained GANs can rapidly generate numerous realizations at a vastly reduced computational expense.
arXiv Detail & Related papers (2021-04-29T02:10:08Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.