HeadGaS: Real-Time Animatable Head Avatars via 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2312.02902v2
- Date: Tue, 13 Aug 2024 15:56:58 GMT
- Title: HeadGaS: Real-Time Animatable Head Avatars via 3D Gaussian Splatting
- Authors: Helisa Dhamo, Yinyu Nie, Arthur Moreau, Jifei Song, Richard Shaw, Yiren Zhou, Eduardo PĂ©rez-Pellitero,
- Abstract summary: HeadGaS is a model that uses 3D Gaussian Splats (3DGS) for 3D head reconstruction and animation.
We demonstrate that HeadGaS delivers state-of-the-art results in real-time inference frame rates, surpassing baselines by up to 2dB.
- Score: 11.849852156716171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D head animation has seen major quality and runtime improvements over the last few years, particularly empowered by the advances in differentiable rendering and neural radiance fields. Real-time rendering is a highly desirable goal for real-world applications. We propose HeadGaS, a model that uses 3D Gaussian Splats (3DGS) for 3D head reconstruction and animation. In this paper we introduce a hybrid model that extends the explicit 3DGS representation with a base of learnable latent features, which can be linearly blended with low-dimensional parameters from parametric head models to obtain expression-dependent color and opacity values. We demonstrate that HeadGaS delivers state-of-the-art results in real-time inference frame rates, surpassing baselines by up to 2dB, while accelerating rendering speed by over x10.
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities [10.816370283498287]
We introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result.
For personalizing, we propose learnable expression-aware rectification blendmaps, ensuring rapid convergence without the reliance on neural networks.
It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods.
arXiv Detail & Related papers (2024-09-23T00:11:30Z) - iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
We present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos.
This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body.
Our method is faster by an order of magnitude (in terms of training time) than its closest competitor.
arXiv Detail & Related papers (2024-07-15T18:51:51Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
Photo-realistic 3D Reconstruction is a fundamental problem in 3D computer vision.
We propose to employ 3D Half-Gaussian (3D-HGS) kernels, which can be used as a plug-and-play kernel.
arXiv Detail & Related papers (2024-06-04T19:04:29Z) - Gaussian Splatting Decoder for 3D-aware Generative Adversarial Networks [10.207899254360374]
NeRF-based 3D-aware Generative Adversarial Networks (GANs) have shown very high rendering quality under large representational variety.
rendering with Neural Radiance Fields poses challenges for 3D applications.
We present a novel approach that combines the high rendering quality of NeRF-based 3D-aware GANs with the flexibility and computational advantages of 3DGS.
arXiv Detail & Related papers (2024-04-16T14:48:40Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - Gaussian3Diff: 3D Gaussian Diffusion for 3D Full Head Synthesis and
Editing [53.05069432989608]
We present a novel framework for generating 3D human heads with remarkable flexibility.
Our method facilitates the creation of diverse and realistic 3D human heads with fine-grained editing over facial features and expressions.
arXiv Detail & Related papers (2023-12-05T19:05:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.