PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2406.10219v1
- Date: Fri, 14 Jun 2024 17:53:55 GMT
- Title: PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting
- Authors: Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, Tom Goldstein,
- Abstract summary: We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
- Score: 59.277480452459315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in novel view synthesis have enabled real-time rendering speeds and high reconstruction accuracy. 3D Gaussian Splatting (3D-GS), a foundational point-based parametric 3D scene representation, models scenes as large sets of 3D Gaussians. Complex scenes can comprise of millions of Gaussians, amounting to large storage and memory requirements that limit the viability of 3D-GS on devices with limited resources. Current techniques for compressing these pretrained models by pruning Gaussians rely on combining heuristics to determine which ones to remove. In this paper, we propose a principled spatial sensitivity pruning score that outperforms these approaches. It is computed as a second-order approximation of the reconstruction error on the training views with respect to the spatial parameters of each Gaussian. Additionally, we propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing the training pipeline. After pruning 88.44% of the Gaussians, we observe that our PUP 3D-GS pipeline increases the average rendering speed of 3D-GS by 2.65$\times$ while retaining more salient foreground information and achieving higher image quality metrics than previous pruning techniques on scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets.
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GS is a new rendering approach that outperforms the neural radiance field (NeRF) in terms of both speed and image quality.
We propose a computational reduction technique that quickly identifies unnecessary 3D Gaussians in real-time for rendering the current view.
For the Mip-NeRF360 dataset, the proposed technique excludes 63% of 3D Gaussians on average before the 2D image projection, which reduces the overall rendering by almost 38.3% without sacrificing peak-signal-to-noise-ratio (PSNR)
The proposed accelerator also achieves a speedup of 10.7x compared to a GPU
arXiv Detail & Related papers (2024-02-21T14:16:49Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.80822249039235]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.