MIND: Multi-Task Incremental Network Distillation
- URL: http://arxiv.org/abs/2312.02916v2
- Date: Wed, 20 Dec 2023 11:42:46 GMT
- Title: MIND: Multi-Task Incremental Network Distillation
- Authors: Jacopo Bonato, Francesco Pelosin, Luigi Sabetta, Alessandro Nicolosi
- Abstract summary: In this study, we present MIND, a parameter isolation method that aims to significantly enhance the performance of replay-free solutions.
Our results showcase the superior performance of MIND indicating its potential for addressing the challenges posed by Class-incremental and Domain-Incremental learning.
- Score: 45.74830585715129
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent surge of pervasive devices that generate dynamic data streams has
underscored the necessity for learning systems to adapt continually to data
distributional shifts. To tackle this challenge, the research community has put
forth a spectrum of methodologies, including the demanding pursuit of
class-incremental learning without replay data. In this study, we present MIND,
a parameter isolation method that aims to significantly enhance the performance
of replay-free solutions and achieve state-of-the-art results on several widely
studied datasets. Our approach introduces two main contributions: two
alternative distillation procedures that significantly improve the efficiency
of MIND increasing the accumulated knowledge of each sub-network, and the
optimization of the BachNorm layers across tasks inside the sub-networks.
Overall, MIND outperforms all the state-of-the-art methods for rehearsal-free
Class-Incremental learning (with an increment in classification accuracy of
approx. +6% on CIFAR-100/10 and +10% on TinyImageNet/10) reaching up to approx.
+40% accuracy in Domain-Incremental scenarios. Moreover, we ablated each
contribution to demonstrate its impact on performance improvement. Our results
showcase the superior performance of MIND indicating its potential for
addressing the challenges posed by Class-incremental and Domain-Incremental
learning in resource-constrained environments.
Related papers
- Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Multi-Epoch learning with Data Augmentation for Deep Click-Through Rate Prediction [53.88231294380083]
We introduce a novel Multi-Epoch learning with Data Augmentation (MEDA) framework, suitable for both non-continual and continual learning scenarios.
MEDA minimizes overfitting by reducing the dependency of the embedding layer on subsequent training data.
Our findings confirm that pre-trained layers can adapt to new embedding spaces, enhancing performance without overfitting.
arXiv Detail & Related papers (2024-06-27T04:00:15Z) - DynaMMo: Dynamic Model Merging for Efficient Class Incremental Learning for Medical Images [0.8213829427624407]
Continual learning, the ability to acquire knowledge from new data while retaining previously learned information, is a fundamental challenge in machine learning.
We propose Dynamic Model Merging, DynaMMo, a method that merges multiple networks at different stages of model training to achieve better computational efficiency.
We evaluate DynaMMo on three publicly available datasets, demonstrating its effectiveness compared to existing approaches.
arXiv Detail & Related papers (2024-04-22T11:37:35Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Scaling Data Generation in Vision-and-Language Navigation [116.95534559103788]
We propose an effective paradigm for generating large-scale data for learning.
We apply 1200+ photo-realistic environments from HM3D and Gibson datasets and synthesizes 4.9 million instruction trajectory pairs.
Thanks to our large-scale dataset, the performance of an existing agent can be pushed up (+11% absolute with regard to previous SoTA) to a significantly new best of 80% single-run success rate on the R2R test split by simple imitation learning.
arXiv Detail & Related papers (2023-07-28T16:03:28Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold
Learning [9.171175292808144]
We propose a novel manifold learning algorithm named Rank Flow Embedding (RFE) for unsupervised and semi-supervised scenarios.
RFE computes context-sensitive embeddings, which are refined following a rank-based processing flow.
The generated embeddings can be exploited for more effective unsupervised retrieval or semi-supervised classification.
arXiv Detail & Related papers (2023-04-24T21:02:12Z) - Multi-Augmentation for Efficient Visual Representation Learning for
Self-supervised Pre-training [1.3733988835863333]
We propose Multi-Augmentations for Self-Supervised Learning (MA-SSRL), which fully searched for various augmentation policies to build the entire pipeline.
MA-SSRL successfully learns the invariant feature representation and presents an efficient, effective, and adaptable data augmentation pipeline for self-supervised pre-training.
arXiv Detail & Related papers (2022-05-24T04:18:39Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Generalized Reinforcement Meta Learning for Few-Shot Optimization [3.7675996866306845]
We present a generic and flexible Reinforcement Learning (RL) based meta-learning framework for the problem of few-shot learning.
Our framework could be easily extended to do network architecture search.
arXiv Detail & Related papers (2020-05-04T03:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.