Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation
- URL: http://arxiv.org/abs/2408.11372v1
- Date: Wed, 21 Aug 2024 06:48:38 GMT
- Title: Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation
- Authors: Hao Wang, Yongqiang Han, Kefan Wang, Kai Cheng, Zhen Wang, Wei Guo, Yong Liu, Defu Lian, Enhong Chen,
- Abstract summary: We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
- Score: 69.60321475454843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of recommendation systems, users exhibit a diverse array of behaviors when interacting with items. This phenomenon has spurred research into learning the implicit semantic relationships between these behaviors to enhance recommendation performance. However, these methods often entail high computational complexity. To address concerns regarding efficiency, pre-training presents a viable solution. Its objective is to extract knowledge from extensive pre-training data and fine-tune the model for downstream tasks. Nevertheless, previous pre-training methods have primarily focused on single-behavior data, while multi-behavior data contains significant noise. Additionally, the fully fine-tuning strategy adopted by these methods still imposes a considerable computational burden. In response to this challenge, we propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation. Specifically, in the pre-training stage, we commence by proposing a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales, thereby facilitating the comprehension of the contextual semantics of multi-behavior sequences. Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module, which generates personalized, progressive, and diverse prompts to fully exploit the potential of the pre-trained model effectively. Extensive experiments on three real-world datasets have unequivocally demonstrated that DPCPL not only exhibits high efficiency and effectiveness, requiring minimal parameter adjustments but also surpasses the state-of-the-art performance across a diverse range of downstream tasks.
Related papers
- Task-Oriented Pre-Training for Drivable Area Detection [5.57325257338134]
We propose a task-oriented pre-training method that begins with generating redundant segmentation proposals.
We then introduce a Specific Category Enhancement Fine-tuning (SCEF) strategy for fine-tuning the Contrastive Language-Image Pre-training (CLIP) model.
This approach can generate a lot of coarse training data for pre-training models, which are further fine-tuned using manually annotated data.
arXiv Detail & Related papers (2024-09-30T10:25:47Z) - Bucket Pre-training is All You Need [9.332544709626875]
Large language models (LLMs) have demonstrated exceptional performance across various natural language processing tasks.
The conventional fixed-length data composition strategy for pretraining, which involves concatenating and splitting documents, can introduce noise and limit the model's ability to capture long-range dependencies.
We propose a multi-bucket data composition method that moves beyond the fixed-length paradigm, offering a more flexible and efficient approach to pretraining.
arXiv Detail & Related papers (2024-07-10T09:27:23Z) - Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment [0.0]
"Harmonized Transfer Learning and Modality alignment (HarMA)" is a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment.
HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing.
arXiv Detail & Related papers (2024-04-28T17:20:08Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation [20.851925464903804]
This paper introduces a novel learning paradigm, Dynamic Sparse Learning, tailored for recommendation models.
DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance.
Our experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.
arXiv Detail & Related papers (2024-02-05T10:16:20Z) - A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
We introduce a novel pretraining procedure that leverages supervised contrastive learning to distinguish features within each pretraining dataset.
We then propose a fine-tuning procedure designed to enhance the accurate prediction of the target data by aligning it more closely with the learned dynamics of the pretraining datasets.
arXiv Detail & Related papers (2023-11-21T02:06:52Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
We propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training)
Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation.
arXiv Detail & Related papers (2022-11-17T18:59:49Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - APS: Active Pretraining with Successor Features [96.24533716878055]
We show that by reinterpreting and combining successorcitepHansenFast with non entropy, the intractable mutual information can be efficiently optimized.
The proposed method Active Pretraining with Successor Feature (APS) explores the environment via non entropy, and the explored data can be efficiently leveraged to learn behavior.
arXiv Detail & Related papers (2021-08-31T16:30:35Z) - Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting [66.45372974713189]
We propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks.
Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark.
We provide open-source RecAdam, which integrates the proposed mechanisms into Adam to facility the NLP community.
arXiv Detail & Related papers (2020-04-27T08:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.