論文の概要: Alchemist: Parametric Control of Material Properties with Diffusion
Models
- arxiv url: http://arxiv.org/abs/2312.02970v1
- Date: Tue, 5 Dec 2023 18:58:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 14:33:12.262215
- Title: Alchemist: Parametric Control of Material Properties with Diffusion
Models
- Title(参考訳): alchemist:拡散モデルによる材料特性のパラメトリック制御
- Authors: Prafull Sharma, Varun Jampani, Yuanzhen Li, Xuhui Jia, Dmitry Lagun,
Fredo Durand, William T. Freeman, Mark Matthews
- Abstract要約: 本手法は,フォトリアリズムで知られているテキスト・イメージ・モデルの生成先行に乗じる。
我々は,NeRFの材料化へのモデルの適用の可能性を示す。
- 参考スコア(独自算出の注目度): 51.63031820280475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method to control material attributes of objects like roughness,
metallic, albedo, and transparency in real images. Our method capitalizes on
the generative prior of text-to-image models known for photorealism, employing
a scalar value and instructions to alter low-level material properties.
Addressing the lack of datasets with controlled material attributes, we
generated an object-centric synthetic dataset with physically-based materials.
Fine-tuning a modified pre-trained text-to-image model on this synthetic
dataset enables us to edit material properties in real-world images while
preserving all other attributes. We show the potential application of our model
to material edited NeRFs.
- Abstract(参考訳): 本研究では,粗さ,金属,アルベド,透過性などの物体の物質特性を実画像で制御する手法を提案する。
提案手法は,スカラー値と命令を用いて低レベルな材料特性を変化させることにより,フォトリアリズムで知られたテキスト・ツー・イメージ・モデルの生成先行に乗じる。
物質特性を制御したデータセットの欠如に対処し,物理材料を用いたオブジェクト中心合成データセットを作成した。
この合成データセットに事前訓練したテキスト・ツー・イメージモデルを微調整することで、他の属性をすべて保存しながら現実世界の画像の素材特性を編集できる。
我々は,NeRFの材料化へのモデルの適用の可能性を示す。
関連論文リスト
- MatSwap: Light-aware material transfers in images [18.37330769828654]
MatSwap(マットスワップ)は、画像内の指定された表面に物質を移す方法である。
我々は、露光紫外線マッピングを必要とせずに、入力材料とシーン内の外観の関係を学習する。
本手法では,シーンの同一性を保ちながら,所望の素材を写真中のターゲット位置にシームレスに統合する。
論文 参考訳(メタデータ) (2025-02-11T18:59:59Z) - MaterialFusion: High-Quality, Zero-Shot, and Controllable Material Transfer with Diffusion Models [1.7749342709605145]
本稿では,高品質な物質移動のための新しいフレームワークであるMaterialFusionを紹介する。
ユーザーは、新しい材料特性とオブジェクトの本来の特徴の最適なバランスを保ちながら、材料応用の度合いを調整できる。
論文 参考訳(メタデータ) (2025-02-10T16:04:33Z) - Materialist: Physically Based Editing Using Single-Image Inverse Rendering [50.39048790589746]
本稿では、学習に基づくアプローチとプログレッシブな微分可能レンダリングを組み合わせた手法を提案する。
提案手法は,より現実的な光物質相互作用,正確な影,大域的な照明を実現する。
また,全シーン形状を必要とせず,効果的に機能する材料透過性編集手法を提案する。
論文 参考訳(メタデータ) (2025-01-07T11:52:01Z) - MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors [67.74705555889336]
本稿では,テクスチャと材料特性に先立って2Dを組み込んだ,従来の3次元逆レンダリングパイプラインであるMaterialFusionを紹介する。
本稿では,2次元拡散モデルであるStableMaterialについて述べる。
種々の照明条件下で, 合成および実物体の4つのデータセット上でのMaterialFusionの照度特性を検証した。
論文 参考訳(メタデータ) (2024-09-23T17:59:06Z) - MaPa: Text-driven Photorealistic Material Painting for 3D Shapes [80.66880375862628]
本稿では,テキスト記述から3次元メッシュの材料を作成することを目的とする。
テクスチャマップを合成する既存の方法とは異なり、我々はセグメントワイドな手続き的な材料グラフを生成することを提案する。
我々のフレームワークは高品質なレンダリングをサポートし、編集にかなりの柔軟性を提供します。
論文 参考訳(メタデータ) (2024-04-26T17:54:38Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
本稿では,未知の静止照明条件下で撮影されたポーズ画像から対象物質を回収することを目的とする。
我々は、最適化プロセスの正規化のための生成モデルを用いて、その材料を事前に学習する。
実世界および合成データセットを用いた実験により,本手法が材料回収における最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-04-17T17:45:08Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
室内シーンの外観分解のための生成モデルIntrinsic Image Diffusionを提案する。
1つの入力ビューから、アルベド、粗さ、および金属地図として表される複数の材料説明をサンプリングする。
提案手法は,PSNRで1.5dB$,アルベド予測で45%のFIDスコアを達成し,よりシャープで,より一貫性があり,より詳細な資料を生成する。
論文 参考訳(メタデータ) (2023-12-19T15:56:19Z) - Neural Photometry-guided Visual Attribute Transfer [4.630419389180576]
本稿では,同じ又は類似の素材のより大きなサンプルに対して,視覚的特性を伝播する深層学習に基づく手法を提案する。
トレーニングには、複数のイルミネーションと専用データ拡張ポリシーの下で撮影された材料の画像を活用する。
我々のモデルは、教師付き画像から画像への変換フレームワークに依存しており、転送されたドメインに依存しない。
論文 参考訳(メタデータ) (2021-12-05T09:22:28Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。