The Landscape of Modern Machine Learning: A Review of Machine,
Distributed and Federated Learning
- URL: http://arxiv.org/abs/2312.03120v1
- Date: Tue, 5 Dec 2023 20:40:05 GMT
- Title: The Landscape of Modern Machine Learning: A Review of Machine,
Distributed and Federated Learning
- Authors: Omer Subasi and Oceane Bel and Joseph Manzano and Kevin Barker
- Abstract summary: We provide a high-level overview for the latest advanced machine learning algorithms, applications, and frameworks.
Our work serves as an introductory text to the vast field of modern machine learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advance of the powerful heterogeneous, parallel and distributed
computing systems and ever increasing immense amount of data, machine learning
has become an indispensable part of cutting-edge technology, scientific
research and consumer products. In this study, we present a review of modern
machine and deep learning. We provide a high-level overview for the latest
advanced machine learning algorithms, applications, and frameworks. Our
discussion encompasses parallel distributed learning, deep learning as well as
federated learning. As a result, our work serves as an introductory text to the
vast field of modern machine learning.
Related papers
- Application-Driven Innovation in Machine Learning [56.85396167616353]
We describe the paradigm of application-driven research in machine learning.
We show how this approach can productively synergize with methods-driven work.
Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation.
arXiv Detail & Related papers (2024-03-26T04:59:27Z) - Interpretable Machine Learning for Discovery: Statistical Challenges \&
Opportunities [1.2891210250935146]
We discuss and review the field of interpretable machine learning.
We outline the types of discoveries that can be made using Interpretable Machine Learning.
We focus on the grand challenge of how to validate these discoveries in a data-driven manner.
arXiv Detail & Related papers (2023-08-02T23:57:31Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Flashlight: Enabling Innovation in Tools for Machine Learning [50.63188263773778]
We introduce Flashlight, an open-source library built to spur innovation in machine learning tools and systems.
We see Flashlight as a tool enabling research that can benefit widely used libraries downstream and bring machine learning and systems researchers closer together.
arXiv Detail & Related papers (2022-01-29T01:03:29Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Open-world Machine Learning: Applications, Challenges, and Opportunities [0.7734726150561086]
Open-world machine learning deals with arbitrary inputs (data with unseen classes) to machine learning systems.
Traditional machine learning is static learning which is not appropriate for an active environment.
This paper presents a systematic review of various techniques for open-world machine learning.
arXiv Detail & Related papers (2021-05-27T21:05:10Z) - Machine learning and deep learning [0.0]
Machine learning describes the capacity of systems to learn from problem-specific training data.
Deep learning is a machine learning concept based on artificial neural networks.
arXiv Detail & Related papers (2021-04-12T09:54:12Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.