Low-Cost High-Power Membership Inference Attacks
- URL: http://arxiv.org/abs/2312.03262v3
- Date: Wed, 12 Jun 2024 09:02:47 GMT
- Title: Low-Cost High-Power Membership Inference Attacks
- Authors: Sajjad Zarifzadeh, Philippe Liu, Reza Shokri,
- Abstract summary: Membership inference attacks aim to detect if a particular data point was used in training a model.
We design a novel statistical test to perform robust membership inference attacks with low computational overhead.
RMIA lays the groundwork for practical yet accurate data privacy risk assessment in machine learning.
- Score: 15.240271537329534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Membership inference attacks aim to detect if a particular data point was used in training a model. We design a novel statistical test to perform robust membership inference attacks (RMIA) with low computational overhead. We achieve this by a fine-grained modeling of the null hypothesis in our likelihood ratio tests, and effectively leveraging both reference models and reference population data samples. RMIA has superior test power compared with prior methods, throughout the TPR-FPR curve (even at extremely low FPR, as low as 0). Under computational constraints, where only a limited number of pre-trained reference models (as few as 1) are available, and also when we vary other elements of the attack (e.g., data distribution), our method performs exceptionally well, unlike prior attacks that approach random guessing. RMIA lays the groundwork for practical yet accurate data privacy risk assessment in machine learning.
Related papers
- Free Record-Level Privacy Risk Evaluation Through Artifact-Based Methods [6.902279764206365]
We propose a novel approach to identify the at-risk samples using only artifacts available during training.
Our method analyzes individual per-sample loss traces and uses them to identify the vulnerable data samples.
arXiv Detail & Related papers (2024-11-08T18:04:41Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - Membership Inference Attacks against Language Models via Neighbourhood
Comparison [45.086816556309266]
Membership Inference attacks (MIAs) aim to predict whether a data sample was present in the training data of a machine learning model or not.
Recent work has demonstrated that reference-based attacks which compare model scores to those obtained from a reference model trained on similar data can substantially improve the performance of MIAs.
We investigate their performance in more realistic scenarios and find that they are highly fragile in relation to the data distribution used to train reference models.
arXiv Detail & Related papers (2023-05-29T07:06:03Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
Membership inference attacks are used to quantify the private information that a model leaks about the individual data points in its training set.
We derive new attack algorithms that can achieve a high AUC score while also highlighting the different factors that affect their performance.
Our algorithms capture a very precise approximation of privacy loss in models, and can be used as a tool to perform an accurate and informed estimation of privacy risk in machine learning models.
arXiv Detail & Related papers (2021-11-18T13:31:22Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.