Efficient Membership Inference Attacks by Bayesian Neural Network
- URL: http://arxiv.org/abs/2503.07482v1
- Date: Mon, 10 Mar 2025 15:58:43 GMT
- Title: Efficient Membership Inference Attacks by Bayesian Neural Network
- Authors: Zhenlong Liu, Wenyu Jiang, Feng Zhou, Hongxin Wei,
- Abstract summary: Membership Inference Attacks (MIAs) aim to estimate whether a specific data point was used in the training of a given model.<n>We propose a novel approach - Bayesian Membership Inference Attack (BMIA), which performs conditional attack through Bayesian inference.
- Score: 12.404604217229101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Membership Inference Attacks (MIAs) aim to estimate whether a specific data point was used in the training of a given model. Previous attacks often utilize multiple reference models to approximate the conditional score distribution, leading to significant computational overhead. While recent work leverages quantile regression to estimate conditional thresholds, it fails to capture epistemic uncertainty, resulting in bias in low-density regions. In this work, we propose a novel approach - Bayesian Membership Inference Attack (BMIA), which performs conditional attack through Bayesian inference. In particular, we transform a trained reference model into Bayesian neural networks by Laplace approximation, enabling the direct estimation of the conditional score distribution by probabilistic model parameters. Our method addresses both epistemic and aleatoric uncertainty with only a reference model, enabling efficient and powerful MIA. Extensive experiments on five datasets demonstrate the effectiveness and efficiency of BMIA.
Related papers
- Entropy-regularized Gradient Estimators for Approximate Bayesian Inference [2.44755919161855]
This paper addresses the estimation of the Bayesian posterior to generate diverse samples by approximating the gradient flow of the Kullback-Leibler divergence.
It presents empirical evaluations on classification tasks to assess the method's performance and discuss its effectiveness for Model-Based Reinforcement Learning.
arXiv Detail & Related papers (2025-03-15T02:30:46Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Generative Modeling with Bayesian Sample Inference [50.07758840675341]
We derive a novel generative model from the simple act of Gaussian posterior inference.
Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability.
Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief.
arXiv Detail & Related papers (2025-02-11T14:27:10Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
We propose a method for building adaptive cross-conformal prediction intervals.
The resulting conformal prediction intervals exhibit a level of adaptivity akin to Bayesian credibility sets.
The potential applicability of the method is demonstrated in the context of surrogate modeling of an expensive-to-evaluate simulator of the clogging phenomenon in steam generators of nuclear reactors.
arXiv Detail & Related papers (2024-01-15T14:45:18Z) - Low-Cost High-Power Membership Inference Attacks [15.240271537329534]
Membership inference attacks aim to detect if a particular data point was used in training a model.
We design a novel statistical test to perform robust membership inference attacks with low computational overhead.
RMIA lays the groundwork for practical yet accurate data privacy risk assessment in machine learning.
arXiv Detail & Related papers (2023-12-06T03:18:49Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Bayesian Cramér-Rao Bound Estimation with Score-Based Models [3.4480437706804503]
The Bayesian Cram'er-Rao bound (CRB) provides a lower bound on the mean square error of any Bayesian estimator under mild regularity conditions.
This work introduces a new data-driven estimator for the CRB using score matching.
arXiv Detail & Related papers (2023-09-28T00:22:21Z) - Membership Inference Attacks against Language Models via Neighbourhood
Comparison [45.086816556309266]
Membership Inference attacks (MIAs) aim to predict whether a data sample was present in the training data of a machine learning model or not.
Recent work has demonstrated that reference-based attacks which compare model scores to those obtained from a reference model trained on similar data can substantially improve the performance of MIAs.
We investigate their performance in more realistic scenarios and find that they are highly fragile in relation to the data distribution used to train reference models.
arXiv Detail & Related papers (2023-05-29T07:06:03Z) - Do Bayesian Variational Autoencoders Know What They Don't Know? [0.6091702876917279]
The problem of detecting the Out-of-Distribution (OoD) inputs is paramount importance for Deep Neural Networks.
It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable.
This paper investigates three approaches to inference: Markov chain Monte Carlo, Bayes gradient by Backpropagation and Weight Averaging-Gaussian.
arXiv Detail & Related papers (2022-12-29T11:48:01Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - CGAN-EB: A Non-parametric Empirical Bayes Method for Crash Hotspot
Identification Using Conditional Generative Adversarial Networks: A
Real-world Crash Data Study [2.3204178451683264]
This paper is the continuation of the authors previous research, where a novel non-parametric EB method for modelling crash frequency data was proposed and evaluated.
Unlike parametric approaches, there is no need for a pre-specified underlying relationship between dependent and independent variables in the proposed CGAN-EB.
The proposed methodology is now applied to a real-world data set collected for road segments from 2012 to 2017 in Washington State.
arXiv Detail & Related papers (2021-12-16T21:22:56Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.