SoftMAC: Differentiable Soft Body Simulation with Forecast-based Contact Model and Two-way Coupling with Articulated Rigid Bodies and Clothes
- URL: http://arxiv.org/abs/2312.03297v3
- Date: Fri, 26 Jul 2024 04:02:13 GMT
- Title: SoftMAC: Differentiable Soft Body Simulation with Forecast-based Contact Model and Two-way Coupling with Articulated Rigid Bodies and Clothes
- Authors: Min Liu, Gang Yang, Siyuan Luo, Lin Shao,
- Abstract summary: We present SoftMAC, a differentiable simulation framework that couples soft bodies with articulated rigid bodies and clothes.
To couple MPM particles with deformable and non-volumetric clothes meshes, we also propose a penetration tracing algorithm.
We conducted comprehensive experiments to validate the effectiveness and accuracy of the proposed differentiable pipeline.
- Score: 7.93869411097782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentiable physics simulation provides an avenue to tackle previously intractable challenges through gradient-based optimization, thereby greatly improving the efficiency of solving robotics-related problems. To apply differentiable simulation in diverse robotic manipulation scenarios, a key challenge is to integrate various materials in a unified framework. We present SoftMAC, a differentiable simulation framework that couples soft bodies with articulated rigid bodies and clothes. SoftMAC simulates soft bodies with the continuum-mechanics-based Material Point Method (MPM). We provide a novel forecast-based contact model for MPM, which effectively reduces penetration without introducing other artifacts like unnatural rebound. To couple MPM particles with deformable and non-volumetric clothes meshes, we also propose a penetration tracing algorithm that reconstructs the signed distance field in local area. Diverging from previous works, SoftMAC simulates the complete dynamics of each modality and incorporates them into a cohesive system with an explicit and differentiable coupling mechanism. The feature empowers SoftMAC to handle a broader spectrum of interactions, such as soft bodies serving as manipulators and engaging with underactuated systems. We conducted comprehensive experiments to validate the effectiveness and accuracy of the proposed differentiable pipeline in downstream robotic manipulation applications. Supplementary materials and videos are available on our project website at https://damianliumin.github.io/SoftMAC.
Related papers
- DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - FluidLab: A Differentiable Environment for Benchmarking Complex Fluid
Manipulation [80.63838153351804]
We introduce FluidLab, a simulation environment with a diverse set of manipulation tasks involving complex fluid dynamics.
At the heart of our platform is a fully differentiable physics simulator, providing GPU-accelerated simulations and gradient calculations.
We propose several domain-specific optimization schemes coupled with differentiable physics.
arXiv Detail & Related papers (2023-03-04T07:24:22Z) - Differentiable Simulation of Soft Multi-body Systems [99.4302215142673]
We develop a top-down matrix assembly algorithm within Projective Dynamics.
We derive a differentiable control framework for soft articulated bodies driven by muscles, joint torques, or pneumatic tubes.
arXiv Detail & Related papers (2022-05-03T20:03:22Z) - DiSECt: A Differentiable Simulator for Parameter Inference and Control
in Robotic Cutting [71.50844437057555]
We present DiSECt: the first differentiable simulator for cutting soft materials.
The simulator augments the finite element method with a continuous contact model based on signed distance fields.
We show that the simulator can be calibrated to match resultant forces and fields from a state-of-the-art commercial solver.
arXiv Detail & Related papers (2022-03-19T07:27:19Z) - Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators [21.349079159359746]
Soft actuators offer a safe and adaptable approach to robotic tasks like gentle grasping and dexterous movement.
Creating accurate models to control such systems is challenging due to the complex physics of deformable materials.
This paper presents a framework that combines the advantages of differentiable simulator and Finite Element Method.
arXiv Detail & Related papers (2022-02-25T21:15:05Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Learning Material Parameters and Hydrodynamics of Soft Robotic Fish via
Differentiable Simulation [26.09104786491426]
Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware.
We demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters and hydrodynamics of our robots.
Although we focus on a specific application for underwater soft robots, our framework is applicable to any pneumatically actuated soft mechanism.
arXiv Detail & Related papers (2021-09-30T05:24:02Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - ADD: Analytically Differentiable Dynamics for Multi-Body Systems with
Frictional Contact [26.408218913234872]
We present a differentiable dynamics solver that is able to handle frictional contact for rigid and deformable objects.
Through a principled mollification of normal and tangential contact forces, our method circumvents the main difficulties inherent to the non-smooth nature of frictional contact.
arXiv Detail & Related papers (2020-07-02T09:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.