Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach
- URL: http://arxiv.org/abs/2312.03406v4
- Date: Sun, 18 May 2025 09:11:15 GMT
- Title: Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach
- Authors: Chao Chen, Tian Zhou, Yanjun Zhao, Hui Liu, Liang Sun, Rong Jin,
- Abstract summary: We present Sparse Soft- Quantization (SVQ), the first VQ method to enhance temporal forecasting.<n>SVQ balances with sparse noise reduction, offering fulliability and a solid foundation in sparse regression.<n>Our approach employs a two-layer dataset and an extensive codebook to streamline the sparse regression process.
- Score: 22.070533429289334
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spatio-temporal forecasting is crucial in various fields and requires a careful balance between identifying subtle patterns and filtering out noise. Vector quantization (VQ) appears well-suited for this purpose, as it quantizes input vectors into a set of codebook vectors or patterns. Although VQ has shown promise in various computer vision tasks, it surprisingly falls short in enhancing the accuracy of spatio-temporal forecasting. We attribute this to two main issues: inaccurate optimization due to non-differentiability and limited representation power in hard-VQ. To tackle these challenges, we introduce Differentiable Sparse Soft-Vector Quantization (SVQ), the first VQ method to enhance spatio-temporal forecasting. SVQ balances detail preservation with noise reduction, offering full differentiability and a solid foundation in sparse regression. Our approach employs a two-layer MLP and an extensive codebook to streamline the sparse regression process, significantly cutting computational costs while simplifying training and improving performance. Empirical studies on five spatio-temporal benchmark datasets show SVQ achieves state-of-the-art results, including a 7.9% improvement on the WeatherBench-S temperature dataset and an average mean absolute error reduction of 9.4% in video prediction benchmarks (Human3.6M, KTH, and KittiCaltech), along with a 17.3% enhancement in image quality (LPIPS). Code is publicly available at https://github.com/Pachark/SVQ-Forecasting.
Related papers
- FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation [55.12070409045766]
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years.<n>Current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization.
arXiv Detail & Related papers (2025-06-13T07:57:38Z) - APHQ-ViT: Post-Training Quantization with Average Perturbation Hessian Based Reconstruction for Vision Transformers [71.2294205496784]
We propose textbfAPHQ-ViT, a novel PTQ approach based on importance estimation with Average Perturbation Hessian (APH)<n>We show that APHQ-ViT using linear quantizers outperforms existing PTQ methods by substantial margins in 3-bit and 4-bit across different vision tasks.
arXiv Detail & Related papers (2025-04-03T11:48:56Z) - P4Q: Learning to Prompt for Quantization in Visual-language Models [38.87018242616165]
We propose a method that balances fine-tuning and quantization named Prompt for Quantization'' (P4Q)
Our method can effectively reduce the gap between image features and text features caused by low-bit quantization.
Our 8-bit P4Q can theoretically compress the CLIP-ViT/B-32 by 4 $times$ while achieving 66.94% Top-1 accuracy.
arXiv Detail & Related papers (2024-09-26T08:31:27Z) - AffineQuant: Affine Transformation Quantization for Large Language Models [58.45460102764]
Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its compression efficiency and cost-effectiveness in the context of training.
Existing PTQ methods for Large-scale Language Models (LLMs) limit the optimization scope to scaling transformations between pre- and post-quantization weights.
In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant)
arXiv Detail & Related papers (2024-03-19T08:40:21Z) - Towards Accurate Post-training Quantization for Reparameterized Models [6.158896686945439]
Current Post-training Quantization (PTQ) methods often lead to significant accuracy degradation.
This is primarily caused by channel-specific and sample-specific outliers.
We propose RepAPQ, a novel framework that preserves the accuracy of quantized reparameterization models.
arXiv Detail & Related papers (2024-02-25T15:42:12Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Soft Convex Quantization: Revisiting Vector Quantization with Convex
Optimization [40.1651740183975]
We propose Soft Convex Quantization (SCQ) as a direct substitute for Vector Quantization (VQ)
SCQ works like a differentiable convex optimization (DCO) layer.
We demonstrate its efficacy on the CIFAR-10, GTSRB and LSUN datasets.
arXiv Detail & Related papers (2023-10-04T17:45:14Z) - Balancing Computational Efficiency and Forecast Error in Machine
Learning-based Time-Series Forecasting: Insights from Live Experiments on
Meteorological Nowcasting [0.0]
This paper addresses the relationship between computational cost and forecast error using meteorological nowcasting.
During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour.
Results indicate that using the Variance Horizon reduced computational usage by more than 50%, while increasing between 0-15% in error.
arXiv Detail & Related papers (2023-09-26T19:10:00Z) - ARRQP: Anomaly Resilient Real-time QoS Prediction Framework with Graph
Convolution [0.16317061277456998]
We introduce a real-time prediction framework (called ARRQP) with a specific emphasis on improving resilience to anomalies in the data.
ARRQP integrates both contextual information and collaborative insights, enabling a comprehensive understanding of user-service interactions.
Results on the benchmark WS-DREAM dataset demonstrate the framework's effectiveness in achieving accurate and timely predictions.
arXiv Detail & Related papers (2023-09-22T04:37:51Z) - QuantEase: Optimization-based Quantization for Language Models [17.333778751252392]
This work introduces Quantization (PTQ) of various quantization layers from recent advances of Large Language Models (LLMs)
Our CD-based approach features straightforward updates, relying solely on vector operations.
We also explore an outlier approach, allowing for retaining significant weights (outoutliers) with complete precision.
arXiv Detail & Related papers (2023-09-05T01:39:09Z) - Analysis of Video Quality Datasets via Design of Minimalistic Video Quality Models [71.06007696593704]
Blind quality assessment (BVQA) plays an indispensable role in monitoring and improving the end-users' viewing experience in real-world video-enabled media applications.
As an experimental field, the improvements of BVQA models have been measured primarily on a few human-rated VQA datasets.
We conduct a first-of-its-kind computational analysis of VQA datasets via minimalistic BVQA models.
arXiv Detail & Related papers (2023-07-26T06:38:33Z) - S-HR-VQVAE: Sequential Hierarchical Residual Learning Vector Quantized Variational Autoencoder for Video Prediction [16.14728977379756]
We put forth a novel model that combines a novel residual vector learning quantized variational autoencoder (HR-VQE) and a hierarchical autoregressive vector predictive model (AST-PM)
We show that our model compares favorably against state-of-the-art video prediction techniques both in quantitative and qualitative evaluations despite a much smaller model size.
arXiv Detail & Related papers (2023-07-13T11:58:27Z) - Solving Oscillation Problem in Post-Training Quantization Through a
Theoretical Perspective [74.48124653728422]
Post-training quantization (PTQ) is widely regarded as one of the most efficient compression methods practically.
We argue that an overlooked problem of oscillation is in the PTQ methods.
arXiv Detail & Related papers (2023-03-21T14:52:52Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
We propose a Gapped Straight-Through ( GST) estimator to reduce the variance without incurring resampling overhead.
This estimator is inspired by the essential properties of Straight-Through Gumbel-Softmax.
Experiments demonstrate that the proposed GST estimator enjoys better performance compared to strong baselines on two discrete deep generative modeling tasks.
arXiv Detail & Related papers (2022-06-15T01:46:05Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Why Approximate Matrix Square Root Outperforms Accurate SVD in Global
Covariance Pooling? [59.820507600960745]
We propose a new GCP meta-layer that uses SVD in the forward pass, and Pad'e Approximants in the backward propagation to compute the gradients.
The proposed meta-layer has been integrated into different CNN models and achieves state-of-the-art performances on both large-scale and fine-grained datasets.
arXiv Detail & Related papers (2021-05-06T08:03:45Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) is a threshold-based sparsification scheme that enjoys similar threshold estimation quality to deep gradient compression (DGC)
Our evaluation shows SIDCo speeds up training by up to 41:7%, 7:6%, and 1:9% compared to the no-compression baseline, Topk, and DGC compressors, respectively.
arXiv Detail & Related papers (2021-01-26T13:06:00Z) - Contrast and Classify: Training Robust VQA Models [60.80627814762071]
We propose a novel training paradigm (ConClaT) that optimize both cross-entropy and contrastive losses.
We find that optimizing both losses -- either alternately or jointly -- is key to effective training.
arXiv Detail & Related papers (2020-10-13T00:23:59Z) - Quantile Surfaces -- Generalizing Quantile Regression to Multivariate
Targets [4.979758772307178]
Our approach is based on an extension of single-output quantile regression (QR) to multivariate-targets, called quantile surfaces (QS)
We present a novel two-stage process: In the first stage, we perform a deterministic point forecast (i.e., central tendency estimation)
Subsequently, we model the prediction uncertainty using QS involving neural networks called quantile surface regression neural networks (QSNN)
We evaluate our novel approach on synthetic data and two currently researched real-world challenges in two different domains: First, probabilistic forecasting for renewable energy power generation, second, short-term cyclists trajectory forecasting for
arXiv Detail & Related papers (2020-09-29T16:35:37Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.