Quantile Surfaces -- Generalizing Quantile Regression to Multivariate
Targets
- URL: http://arxiv.org/abs/2010.05898v1
- Date: Tue, 29 Sep 2020 16:35:37 GMT
- Title: Quantile Surfaces -- Generalizing Quantile Regression to Multivariate
Targets
- Authors: Maarten Bieshaar, Jens Schreiber, Stephan Vogt, Andr\'e Gensler,
Bernhard Sick
- Abstract summary: Our approach is based on an extension of single-output quantile regression (QR) to multivariate-targets, called quantile surfaces (QS)
We present a novel two-stage process: In the first stage, we perform a deterministic point forecast (i.e., central tendency estimation)
Subsequently, we model the prediction uncertainty using QS involving neural networks called quantile surface regression neural networks (QSNN)
We evaluate our novel approach on synthetic data and two currently researched real-world challenges in two different domains: First, probabilistic forecasting for renewable energy power generation, second, short-term cyclists trajectory forecasting for
- Score: 4.979758772307178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we present a novel approach to multivariate probabilistic
forecasting. Our approach is based on an extension of single-output quantile
regression (QR) to multivariate-targets, called quantile surfaces (QS). QS uses
a simple yet compelling idea of indexing observations of a probabilistic
forecast through direction and vector length to estimate a central tendency. We
extend the single-output QR technique to multivariate probabilistic targets. QS
efficiently models dependencies in multivariate target variables and represents
probability distributions through discrete quantile levels. Therefore, we
present a novel two-stage process. In the first stage, we perform a
deterministic point forecast (i.e., central tendency estimation). Subsequently,
we model the prediction uncertainty using QS involving neural networks called
quantile surface regression neural networks (QSNN). Additionally, we introduce
new methods for efficient and straightforward evaluation of the reliability and
sharpness of the issued probabilistic QS predictions. We complement this by the
directional extension of the Continuous Ranked Probability Score (CRPS) score.
Finally, we evaluate our novel approach on synthetic data and two currently
researched real-world challenges in two different domains: First, probabilistic
forecasting for renewable energy power generation, second, short-term cyclists
trajectory forecasting for autonomously driving vehicles. Especially for the
latter, our empirical results show that even a simple one-layer QSNN
outperforms traditional parametric multivariate forecasting techniques, thus
improving the state-of-the-art performance.
Related papers
- From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
We reinvigorate maximum likelihood estimation (MLE) for macroeconomic density forecasting through a novel neural network architecture with dedicated mean and variance hemispheres.
Our Hemisphere Neural Network (HNN) provides proactive volatility forecasts based on leading indicators when it can, and reactive volatility based on the magnitude of previous prediction errors when it must.
arXiv Detail & Related papers (2023-11-27T21:37:50Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Probabilistic Forecasting with Coherent Aggregation [42.215158938066054]
We augment an MQForecaster neural network architecture with a novel deep Gaussian factor forecasting model that achieves coherence by construction.
In a comparison to state-of-the-art coherent forecasting methods, DeepCoFactor achieves significant improvements in scaled CRPS forecast accuracy, with average gains of 15%.
arXiv Detail & Related papers (2023-07-19T07:31:37Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Probabilistic Forecasting with Generative Networks via Scoring Rule
Minimization [5.5643498845134545]
We use generative neural networks to parametrize distributions on high-dimensional spaces by transforming draws from a latent variable.
We train generative networks to minimize a predictive-sequential (or prequential) scoring rule on a recorded temporal sequence of the phenomenon of interest.
Our method outperforms state-of-the-art adversarial approaches, especially in probabilistic calibration.
arXiv Detail & Related papers (2021-12-15T15:51:12Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Multi-target regression via output space quantization [0.3007949058551534]
The proposed method, called MRQ, is based on the idea of quantizing the output space in order to transform the multiple continuous targets into one or more discrete ones.
Experiments on a large collection of benchmark datasets show that MRQ is both highly scalable and also competitive with the state-of-the-art in terms of accuracy.
arXiv Detail & Related papers (2020-03-22T13:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.