Run LoRA Run: Faster and Lighter LoRA Implementations
- URL: http://arxiv.org/abs/2312.03415v2
- Date: Fri, 14 Jun 2024 14:36:45 GMT
- Title: Run LoRA Run: Faster and Lighter LoRA Implementations
- Authors: Daria Cherniuk, Aleksandr Mikhalev, Ivan Oseledets,
- Abstract summary: LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers.
This paper presents the RunLoRA framework for efficient implementations of LoRA.
Experiments show up to 28% speedup on language modeling networks.
- Score: 50.347242693025336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers. This technique is used both for fine-tuning and full training of large language models. This paper presents the RunLoRA framework for efficient implementations of LoRA that significantly improves the speed of neural network training and fine-tuning using low-rank adapters. The proposed implementation optimizes the computation of LoRA operations based on dimensions of corresponding linear layer, layer input dimensions and lora rank by choosing best forward and backward computation graph based on FLOPs and time estimations, resulting in faster training without sacrificing accuracy. The experimental results show up to 28\% speedup on language modeling networks.
Related papers
- CopRA: A Progressive LoRA Training Strategy [9.847045610578073]
Low-Rank Adaptation (LoRA) is a parameter-efficient technique for fine-tuning foundation models.
In this work, we propose a novel progressive training strategy for LoRA with random layer dropping.
We refer to this method as Cooperative LoRA (CopRA)
arXiv Detail & Related papers (2024-10-30T11:07:09Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - GeoLoRA: Geometric integration for parameter efficient fine-tuning [6.701651480567394]
Low-Rank Adaptation (LoRA) has become a widely used method for parameter-efficient fine-tuning of pre-trained neural networks.
We introduce GeoLoRA, a novel approach that addresses the limitations by leveraging dynamical low-rank approximation theory.
We demonstrate the effectiveness of GeoLoRA on several state-of-the-art benchmarks, showing that it outperforms existing methods in both accuracy and computational efficiency.
arXiv Detail & Related papers (2024-10-24T13:26:10Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
We propose ResLoRA, an improved framework of low-rank adaptation (LoRA)
Our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA.
The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-02-28T04:33:20Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z) - Flora: Low-Rank Adapters Are Secretly Gradient Compressors [30.224822087562163]
Low-rank adaptation (LoRA) is proposed to reduce the optimization states by training fewer parameters.
LoRA restricts overall weight update matrices to be low-rank, limiting the model performance.
We propose Flora, which is able to achieve high-rank updates by resampling the projection matrices.
arXiv Detail & Related papers (2024-02-05T18:50:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.