GeoLoRA: Geometric integration for parameter efficient fine-tuning
- URL: http://arxiv.org/abs/2410.18720v1
- Date: Thu, 24 Oct 2024 13:26:10 GMT
- Title: GeoLoRA: Geometric integration for parameter efficient fine-tuning
- Authors: Steffen Schotthöfer, Emanuele Zangrando, Gianluca Ceruti, Francesco Tudisco, Jonas Kusch,
- Abstract summary: Low-Rank Adaptation (LoRA) has become a widely used method for parameter-efficient fine-tuning of pre-trained neural networks.
We introduce GeoLoRA, a novel approach that addresses the limitations by leveraging dynamical low-rank approximation theory.
We demonstrate the effectiveness of GeoLoRA on several state-of-the-art benchmarks, showing that it outperforms existing methods in both accuracy and computational efficiency.
- Score: 6.701651480567394
- License:
- Abstract: Low-Rank Adaptation (LoRA) has become a widely used method for parameter-efficient fine-tuning of large-scale, pre-trained neural networks. However, LoRA and its extensions face several challenges, including the need for rank adaptivity, robustness, and computational efficiency during the fine-tuning process. We introduce GeoLoRA, a novel approach that addresses these limitations by leveraging dynamical low-rank approximation theory. GeoLoRA requires only a single backpropagation pass over the small-rank adapters, significantly reducing computational cost as compared to similar dynamical low-rank training methods and making it faster than popular baselines such as AdaLoRA. This allows GeoLoRA to efficiently adapt the allocated parameter budget across the model, achieving smaller low-rank adapters compared to heuristic methods like AdaLoRA and LoRA, while maintaining critical convergence, descent, and error-bound theoretical guarantees. The resulting method is not only more efficient but also more robust to varying hyperparameter settings. We demonstrate the effectiveness of GeoLoRA on several state-of-the-art benchmarks, showing that it outperforms existing methods in both accuracy and computational efficiency.
Related papers
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Unlocking the Global Synergies in Low-Rank Adapters [20.32980343066711]
Low-rank Adaption (LoRA) has been the de-facto parameter-efficient fine-tuning technique for large language models.
We present HeteroLoRA, a light-weight search algorithm that leverages zero-cost proxies to allocate the limited LoRA trainable parameters.
Experiments show that HeteroLoRA enables improvements in model performance given the same parameter budge.
arXiv Detail & Related papers (2024-06-21T08:10:03Z) - DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution [28.589498108609202]
Low-Rank Adaptation (LoRA) relies on a bypass framework that ignores the differential parameter budget requirements across weight matrices.
DoRA decomposes high-rank LoRA layers into structured single-rank components, allowing for dynamic pruning of parameter budget.
Experimental results demonstrate that DoRA can achieve competitive performance compared with LoRA and full model fine-tuning.
arXiv Detail & Related papers (2024-05-27T17:02:27Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers.
This paper presents the RunLoRA framework for efficient implementations of LoRA.
Experiments show up to 28% speedup on language modeling networks.
arXiv Detail & Related papers (2023-12-06T10:54:34Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.