Integrating Pre-Trained Speech and Language Models for End-to-End Speech Recognition
- URL: http://arxiv.org/abs/2312.03668v2
- Date: Thu, 6 Jun 2024 15:24:16 GMT
- Title: Integrating Pre-Trained Speech and Language Models for End-to-End Speech Recognition
- Authors: Yukiya Hono, Koh Mitsuda, Tianyu Zhao, Kentaro Mitsui, Toshiaki Wakatsuki, Kei Sawada,
- Abstract summary: This paper proposes integrating a pre-trained speech representation model and a large language model (LLM) for E2E ASR.
The proposed model enables the optimization of the entire ASR process, including acoustic feature extraction and acoustic and language modeling.
- Score: 12.77573161345651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in machine learning have made it possible to perform various text and speech processing tasks, such as automatic speech recognition (ASR), in an end-to-end (E2E) manner. E2E approaches utilizing pre-trained models are gaining attention for conserving training data and resources. However, most of their applications in ASR involve only one of either a pre-trained speech or a language model. This paper proposes integrating a pre-trained speech representation model and a large language model (LLM) for E2E ASR. The proposed model enables the optimization of the entire ASR process, including acoustic feature extraction and acoustic and language modeling, by combining pre-trained models with a bridge network and also enables the application of remarkable developments in LLM utilization, such as parameter-efficient domain adaptation and inference optimization. Experimental results demonstrate that the proposed model achieves a performance comparable to that of modern E2E ASR models by utilizing powerful pre-training models with the proposed integrated approach.
Related papers
- Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)
Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)
We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - Enhancing CTC-based speech recognition with diverse modeling units [2.723573795552244]
In recent years, the evolution of end-to-end (E2E) automatic speech recognition (ASR) models has been remarkable.
On top of E2E systems, researchers have achieved substantial accuracy improvement by rescoring E2E model's N-best hypotheses with a phoneme-based model.
We propose an efficient joint training approach, where E2E models are trained jointly with diverse modeling units.
arXiv Detail & Related papers (2024-06-05T13:52:55Z) - Generative Pre-training for Speech with Flow Matching [81.59952572752248]
We pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions.
Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis.
arXiv Detail & Related papers (2023-10-25T03:40:50Z) - End-to-End Speech Recognition: A Survey [68.35707678386949]
The goal of this survey is to provide a taxonomy of E2E ASR models and corresponding improvements.
All relevant aspects of E2E ASR are covered in this work, accompanied by discussions of performance and deployment opportunities.
arXiv Detail & Related papers (2023-03-03T01:46:41Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
We propose a new parameter-efficient learning framework based on neural model reprogramming for cross-lingual speech recognition.
We design different auxiliary neural architectures focusing on learnable pre-trained feature enhancement.
Our methods outperform existing ASR tuning architectures and their extension with self-supervised losses.
arXiv Detail & Related papers (2023-01-19T02:37:56Z) - A Complementary Joint Training Approach Using Unpaired Speech and Text
for Low-Resource Automatic Speech Recognition [25.473191378558138]
We leverage unpaired data to train a general sequence-to-sequence model.
Inspired by the complementarity of speech-PseudoLabel pair and SynthesizedAudio-text pair, we propose a complementary joint training(CJT) method.
arXiv Detail & Related papers (2022-04-05T07:02:53Z) - End-to-End Integration of Speech Recognition, Speech Enhancement, and
Self-Supervised Learning Representation [36.66970917185465]
This work presents our end-to-end (E2E) automatic speech recognition (ASR) model targetting at robust speech recognition.
Compared with conventional E2E ASR models, the proposed E2E model integrates two important modules.
The IRIS model achieves the best performance reported in the literature for the single-channel CHiME-4 benchmark.
arXiv Detail & Related papers (2022-04-01T16:02:31Z) - An Exploration of Self-Supervised Pretrained Representations for
End-to-End Speech Recognition [98.70304981174748]
We focus on the general applications of pretrained speech representations, on advanced end-to-end automatic speech recognition (E2E-ASR) models.
We select several pretrained speech representations and present the experimental results on various open-source and publicly available corpora for E2E-ASR.
arXiv Detail & Related papers (2021-10-09T15:06:09Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
We propose a novel model, factorized neural Transducer, by factorizing the blank and vocabulary prediction.
It is expected that this factorization can transfer the improvement of the standalone language model to the Transducer for speech recognition.
We demonstrate that the proposed factorized neural Transducer yields 15% to 20% WER improvements when out-of-domain text data is used for language model adaptation.
arXiv Detail & Related papers (2021-09-27T15:04:00Z) - Efficiently Fusing Pretrained Acoustic and Linguistic Encoders for
Low-resource Speech Recognition [9.732767611907068]
In this work, we fuse a pre-trained acoustic encoder (wav2vec2.0) and a pre-trained linguistic encoder (BERT) into an end-to-end ASR model.
Our model achieves better recognition performance on CALLHOME corpus (15 hours) than other end-to-end models.
arXiv Detail & Related papers (2021-01-17T16:12:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.