論文の概要: ImFace++: A Sophisticated Nonlinear 3D Morphable Face Model with
Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2312.04028v1
- Date: Thu, 7 Dec 2023 03:53:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 16:18:40.014448
- Title: ImFace++: A Sophisticated Nonlinear 3D Morphable Face Model with
Implicit Neural Representations
- Title(参考訳): ImFace++: 難解なニューラル表現を持つ高度化非線形3次元形態素顔モデル
- Authors: Mingwu Zheng, Haiyu Zhang, Hongyu Yang, Liming Chen, Di Huang
- Abstract要約: 本稿では,暗黙のニューラル表現を持つ高度で連続的な空間を学習するために,ImFace++という新しい3次元顔モデルを提案する。
包括的質的,定量的評価により,ImFace++は顔再構成の精度と対応精度の両方の観点から,最先端性を大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 26.838314840582004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate representations of 3D faces are of paramount importance in various
computer vision and graphics applications. However, the challenges persist due
to the limitations imposed by data discretization and model linearity, which
hinder the precise capture of identity and expression clues in current studies.
This paper presents a novel 3D morphable face model, named ImFace++, to learn a
sophisticated and continuous space with implicit neural representations.
ImFace++ first constructs two explicitly disentangled deformation fields to
model complex shapes associated with identities and expressions, respectively,
which simultaneously facilitate the automatic learning of correspondences
across diverse facial shapes. To capture more sophisticated facial details, a
refinement displacement field within the template space is further
incorporated, enabling a fine-grained learning of individual-specific facial
details. Furthermore, a Neural Blend-Field is designed to reinforce the
representation capabilities through adaptive blending of an array of local
fields. In addition to ImFace++, we have devised an improved learning strategy
to extend expression embeddings, allowing for a broader range of expression
variations. Comprehensive qualitative and quantitative evaluations demonstrate
that ImFace++ significantly advances the state-of-the-art in terms of both face
reconstruction fidelity and correspondence accuracy.
- Abstract(参考訳): 3次元顔の正確な表現は、様々なコンピュータビジョンやグラフィックスアプリケーションにおいて最重要となる。
しかし、データの離散化とモデル線形性によって課される制限により、現在の研究におけるアイデンティティと表現の手がかりの正確な取得が妨げられているため、課題は継続する。
本稿では,暗黙のニューラル表現を持つ高度で連続的な空間を学習するために,ImFace++という新しい3次元顔モデルを提案する。
ImFace++は、まず2つの明示的な非交叉変形場を構築し、それぞれアイデンティティと表現に関連する複雑な形状をモデル化し、同時に多様な顔形状の対応を自動学習する。
より洗練された顔の詳細をキャプチャするために、テンプレート空間内の精細化変位場がさらに組み込まれ、個々の顔の詳細をきめ細かく学習することができる。
さらに、ニューラルネットワークブレンドフィールドは、局所フィールドの配列の適応的なブレンドによって表現能力を強化するように設計されている。
imface++に加えて、表情埋め込みを拡張するための学習戦略を考案し、幅広い表現のバリエーションを可能にした。
包括的質的,定量的評価により,ImFace++は顔再構成の精度と対応精度の両方の観点から,最先端性を大幅に向上することが示された。
関連論文リスト
- GaFET: Learning Geometry-aware Facial Expression Translation from
In-The-Wild Images [55.431697263581626]
本稿では,パラメトリックな3次元顔表現をベースとした新しい顔表情翻訳フレームワークを提案する。
我々は、最先端の手法と比較して、高品質で正確な表情伝達結果を実現し、様々なポーズや複雑なテクスチャの適用性を実証する。
論文 参考訳(メタデータ) (2023-08-07T09:03:35Z) - One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural
Radiance Field [81.07651217942679]
トーキングヘッド生成は、ソース画像の識別情報を保持し、駆動画像の動作を模倣する顔を生成することを目的としている。
我々は高忠実かつ自由視点の対話ヘッド合成を実現するHiDe-NeRFを提案する。
論文 参考訳(メタデータ) (2023-04-11T09:47:35Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
本稿では,1つのパスを1つのパスで合成し,必要なニューラルネットワークのレンダリングサンプルのみを合成するスタイルベースの生成ネットワークを提案する。
このモデルは、任意のポーズと照明の顔画像に正確に適合し、顔の特徴を抽出し、制御可能な条件下で顔を再レンダリングするために使用できることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:28:45Z) - ImFace: A Nonlinear 3D Morphable Face Model with Implicit Neural
Representations [21.389170615787368]
本稿では,暗黙のニューラル表現を持つ非線形かつ連続的な空間を学習するために,新しい3次元顔モデルImFaceを提案する。
2つの明示的に非交叉な変形場を構築し、それぞれアイデンティティと表現に関連する複雑な形状をモデル化し、表現の埋め込みを拡張するための改良された学習戦略を設計する。
ImFaceに加えて、暗黙の表現における水密入力要求の問題に対処するために、効果的な前処理パイプラインが提案されている。
論文 参考訳(メタデータ) (2022-03-28T05:37:59Z) - Facial Geometric Detail Recovery via Implicit Representation [147.07961322377685]
そこで本研究では,一眼の顔画像のみを用いて,テクスチャガイドを用いた幾何的細部復元手法を提案する。
提案手法は,高品質なテクスチャ補完と暗黙の面の強力な表現性を組み合わせたものである。
本手法は, 顔の正確な細部を復元するだけでなく, 正常部, アルベド部, シェーディング部を自己監督的に分解する。
論文 参考訳(メタデータ) (2022-03-18T01:42:59Z) - FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer
Using Neural Generative Adversarial Networks [0.7043489166804575]
顔の識別と表情を分離して符号化する新しい3次元顔モデル表現であるFaceTuneGANを提案する。
本稿では,2次元領域で使用されている画像と画像の変換ネットワークを3次元顔形状に適応させる手法を提案する。
論文 参考訳(メタデータ) (2021-12-01T14:42:03Z) - Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo
Collection [65.92058628082322]
非パラメトリックフェースモデリングは形状仮定なしで画像からのみ3次元フェースを再構成することを目的としている。
本稿では,教師なしのロバストな3次元顔モデリングのための学習・アグリゲート・パーソナライズ・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T03:10:17Z) - Learning Complete 3D Morphable Face Models from Images and Videos [88.34033810328201]
本稿では,画像やビデオから顔形状,アルベド,表現の完全な3次元モデルを学ぶための最初のアプローチを提案する。
既存の手法よりも,学習モデルの方がより一般化し,高品質な画像ベース再構築につながることを示す。
論文 参考訳(メタデータ) (2020-10-04T20:51:23Z) - Personalized Face Modeling for Improved Face Reconstruction and Motion
Retargeting [22.24046752858929]
本稿では、ユーザごとのパーソナライズされた顔モデルとフレームごとの顔の動きパラメータを共同で学習するエンドツーエンドフレームワークを提案する。
具体的には、パーソナライズされた修正を予測することによって、ユーザ固有の表現と動的(表現固有の)アルベドマップのブレンドを学習する。
実験結果から, 顔の微細な動態を広範囲の状況で正確に把握できることが示唆された。
論文 参考訳(メタデータ) (2020-07-14T01:30:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。