論文の概要: Doodle Your 3D: From Abstract Freehand Sketches to Precise 3D Shapes
- arxiv url: http://arxiv.org/abs/2312.04043v2
- Date: Fri, 7 Jun 2024 10:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 20:36:48.843278
- Title: Doodle Your 3D: From Abstract Freehand Sketches to Precise 3D Shapes
- Title(参考訳): Doodle Your 3D:抽象的なフリーハンドケッチから精密な3D形状まで
- Authors: Hmrishav Bandyopadhyay, Subhadeep Koley, Ayan Das, Ayan Kumar Bhunia, Aneeshan Sain, Pinaki Nath Chowdhury, Tao Xiang, Yi-Zhe Song,
- Abstract要約: 本稿では,抽象モデリングとクロスモーダル対応を容易にする,新しい部分レベルモデリング・アライメントフレームワークを提案する。
提案手法は,CLIPassoエッジマップと投影された3次元部分領域との対応性を確立することで,スケッチモデリングにシームレスに拡張する。
- 参考スコア(独自算出の注目度): 118.406721663244
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we democratise 3D content creation, enabling precise generation of 3D shapes from abstract sketches while overcoming limitations tied to drawing skills. We introduce a novel part-level modelling and alignment framework that facilitates abstraction modelling and cross-modal correspondence. Leveraging the same part-level decoder, our approach seamlessly extends to sketch modelling by establishing correspondence between CLIPasso edgemaps and projected 3D part regions, eliminating the need for a dataset pairing human sketches and 3D shapes. Additionally, our method introduces a seamless in-position editing process as a byproduct of cross-modal part-aligned modelling. Operating in a low-dimensional implicit space, our approach significantly reduces computational demands and processing time.
- Abstract(参考訳): 本稿では、3Dコンテンツ作成を民主化し、抽象スケッチから3D形状を正確に生成し、描画スキルの限界を克服する。
本稿では,抽象モデリングとクロスモーダル対応を容易にする新しい部分レベルモデリング・アライメントフレームワークを提案する。
同じ部分レベルのデコーダを活用することで,CLIPassoエッジマップと投影された3D部分領域との対応性を確立し,人間のスケッチと3D形状をペアリングするデータセットを不要にすることで,スケッチモデリングをシームレスに実現する。
さらに,クロスモーダルなパートアライメントモデリングの副産物として,シームレスなインポジション編集プロセスを導入する。
低次元の暗黙空間で運用することで,計算要求や処理時間を著しく削減できる。
関連論文リスト
- Sketch3D: Style-Consistent Guidance for Sketch-to-3D Generation [55.73399465968594]
本稿では,テキスト記述と一致する色と入力スケッチに整合した形状のリアルな3Dアセットを生成するための,新しい生成パラダイムSketch3Dを提案する。
3つの戦略は、3次元ガウスの最適化、すなわち分布伝達機構による構造最適化、直感的なMSE損失による色最適化、CLIPに基づく幾何学的類似性損失によるスケッチ類似性最適化である。
論文 参考訳(メタデータ) (2024-04-02T11:03:24Z) - NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D形状生成は、特定の条件や制約に固執する革新的な3Dコンテンツを作成することを目的としている。
既存の方法は、しばしば3Dの形状を局所化されたコンポーネントの列に分解し、各要素を分離して扱う。
本研究では2次元平面表現を利用した空間認識型3次元形状生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T04:09:34Z) - Sketch-A-Shape: Zero-Shot Sketch-to-3D Shape Generation [13.47191379827792]
そこで本研究では,スケッチから3次元形状を生成するために,事前学習モデルの大きさについて検討する。
トレーニング中の合成レンダリングの特徴を3次元生成モデルに条件付けすることで,推論時にスケッチから3次元形状を効果的に生成できることがわかった。
これは、事前訓練された大きな視覚モデルの特徴が、ドメインシフトに耐性を持つ意味的な信号を持っていることを示唆している。
論文 参考訳(メタデータ) (2023-07-08T00:45:01Z) - 3D VR Sketch Guided 3D Shape Prototyping and Exploration [108.6809158245037]
本稿では,3次元VRスケッチを条件として行う3次元形状生成ネットワークを提案する。
スケッチは初心者がアートトレーニングなしで作成していると仮定する。
本手法は,オリジナルスケッチの構造に整合した複数の3次元形状を生成する。
論文 参考訳(メタデータ) (2023-06-19T10:27:24Z) - SENS: Part-Aware Sketch-based Implicit Neural Shape Modeling [124.3266213819203]
SENSは手描きスケッチから3Dモデルを生成し編集するための新しい手法である。
SENSはスケッチを分析し、部品をViTパッチエンコーディングにエンコードする。
SENSは部分再構成による精細化をサポートし、微調整とアーティファクトの除去を可能にする。
論文 参考訳(メタデータ) (2023-06-09T17:50:53Z) - Sketch2Cloth: Sketch-based 3D Garment Generation with Unsigned Distance
Fields [12.013968508918634]
ユーザのスケッチ入力から符号なし距離場を用いたスケッチベースの3D衣料生成システムであるSketch2Clothを提案する。
Sketch2Clothはまず、スケッチ入力からターゲット3Dモデルの符号なし距離関数を推定し、マーチングキューブを用いて推定フィールドからメッシュを抽出する。
また、生成されたメッシュを修正するためのモデル編集機能も提供します。
論文 参考訳(メタデータ) (2023-03-01T01:45:28Z) - Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches [65.96417928860039]
スケッチのメッシュ変換にはエンコーダ/デコーダアーキテクチャを使用する。
このアプローチはデプロイが容易で、スタイル変更に堅牢であり、効果的であることを示します。
論文 参考訳(メタデータ) (2021-04-01T14:10:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。