論文の概要: A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems
- arxiv url: http://arxiv.org/abs/2312.04062v2
- Date: Fri, 21 Jun 2024 14:51:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 20:08:09.369385
- Title: A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems
- Title(参考訳): 重畳MIMOシステムのためのFew-Shot CSIフィードバックフレームワーク
- Authors: Binggui Zhou, Xi Yang, Jintao Wang, Shaodan Ma, Feifei Gao, Guanghua Yang,
- Abstract要約: 周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおけるダウンリンクプリコーディングには、正確なチャネル状態情報(CSI)が不可欠である。
しかし,アンテナやサブキャリアの規模が大きくなると,ユーザ機器(UE)からのフィードバックによるCSI取得が困難になる。
CSIを圧縮するために深層学習に基づく手法が登場したが、これらの方法はかなりの収集サンプルを必要とする。
既存のディープラーニング手法は、フル次元のCSIフィードバックに重点を置いているため、フィードバックオーバーヘッドが劇的に増加することにも悩まされる。
低オーバーヘッド抽出に基づくFew-Shot CSIを提案する。
- 参考スコア(独自算出の注目度): 45.22132581755417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems with orthogonal frequency-division multiplexing (OFDM). However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers and leads to extremely high CSI feedback overhead. Deep learning-based methods have emerged for compressing CSI but these methods generally require substantial collected samples and thus pose practical challenges. Moreover, existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback. To address these issues, we propose a low-overhead Incorporation-Extrapolation based Few-Shot CSI feedback Framework (IEFSF) for massive MIMO systems. An incorporation-extrapolation scheme for eigenvector-based CSI feedback is proposed to reduce the feedback overhead. Then, to alleviate the necessity of extensive collected samples and enable few-shot CSI feedback, we further propose a knowledge-driven data augmentation (KDDA) method and an artificial intelligence-generated content (AIGC) -based data augmentation method by exploiting the domain knowledge of wireless channels and by exploiting a novel generative model, respectively. Experimental results based on the DeepMIMO dataset demonstrate that the proposed IEFSF significantly reduces CSI feedback overhead by 64 times compared with existing methods while maintaining higher feedback accuracy using only several hundred collected samples.
- Abstract(参考訳): 直交周波数分割多重化(OFDM)を用いたFDD(Multiple-Input multiple-output)システムにおいて、正確なチャネル状態情報(CSI)がダウンリンクプリコーディングに不可欠である。
しかし、ユーザ機器(UE)からのフィードバックによるCSI取得は、アンテナやサブキャリアの規模が大きくなると困難になり、非常に高いCSIフィードバックオーバーヘッドにつながる。
深層学習に基づくCSI圧縮手法が登場したが、これらの手法は一般的にかなりの収集サンプルを必要とするため、実際的な課題が生じる。
さらに、既存のディープラーニング手法では、フル次元のCSIフィードバックに焦点が当てられているため、フィードバックオーバーヘッドが劇的に増大する。
これらの課題に対処するため,大規模なMIMOシステムを対象としたFew-Shot CSIフィードバックフレームワーク(IEFSF)を提案する。
固有ベクトルに基づくCSIフィードバックの組込み抽出方式を提案し,フィードバックのオーバーヘッドを低減する。
そこで我々は,広範に収集されたサンプルの必要性を軽減し,少数のCSIフィードバックを可能にするために,無線チャネルのドメイン知識を活用し,新しい生成モデルを活用することにより,知識駆動型データ拡張(KDDA)法と人工知能生成コンテンツ(AIGC)に基づくデータ拡張手法を提案する。
DeepMIMOデータセットに基づく実験結果から,提案したIEFSFは既存手法と比較してCSIフィードバックのオーバーヘッドを64倍に低減し,数百個のサンプルのみを用いて高いフィードバック精度を維持した。
関連論文リスト
- ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Enhancing Deep Learning Performance of Massive MIMO CSI Feedback [7.63185216082836]
我々は,深層学習に基づくMIMO(Massive multiple-input multiple-output)CSIフィードバックアプローチを強化するために,JPTS(JPTS)を利用したジグソーパズルを提案する。
実験結果から, 室内環境および屋外環境において, 精度を平均12.07%, 7.01%向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-08-24T07:08:31Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
ディープラーニング(DL)ベースのCSIフィードバックは、DLベースのオートエンコーダによるCSI圧縮と再構築を指し、フィードバックオーバーヘッドを大幅に削減することができる。
その焦点は、CSIフィードバックの正確性を改善するために、新しいニューラルネットワークアーキテクチャとコミュニケーション専門家の知識の利用である。
論文 参考訳(メタデータ) (2022-06-29T03:28:57Z) - Deep Learning for 1-Bit Compressed Sensing-based Superimposed CSI
Feedback [2.6831842796906393]
本稿では,1ビット圧縮されたセンサによる重畳されたCSIフィードバックを改善するためのディープラーニング方式を提案する。
提案方式は,UL-USとダウンリンクCSIの回復精度を低処理遅延で向上する。
論文 参考訳(メタデータ) (2022-03-13T09:33:53Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
UEにおけるCSIを低次元の潜在空間に符号化し、基地局で復号する自動エンコーダアーキテクチャに基づくAIベースのCSIフィードバックを提案する。
シミュレーションの結果,AIに基づく提案したアーキテクチャは,最先端の高分解能線形組合せ符号ブックよりも優れていた。
論文 参考訳(メタデータ) (2022-02-02T19:04:49Z) - CSI Feedback with Model-Driven Deep Learning of Massive MIMO Systems [0.0]
モデル駆動深層学習に基づく2段階低ランクCSIフィードバック方式を提案する。
さらに、より効率的なCSIフィードバックを実現するために、高速反復収縮しきい値アルゴリズム(FISTA)を展開させることにより、FISTA-Netというディープ反復ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2021-12-13T03:50:43Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
ニューラルネットワーク(NN)を用いて,プリコーディング行列インジケータ(PMI)符号化とデコードモジュールを置き換える,低オーバヘッド特性を継承するDLベースの暗黙的フィードバックアーキテクチャを提案する。
1つのリソースブロック(RB)では、2つのアンテナ構成下のタイプIコードブックと比較して25.0%と40.0%のオーバーヘッドを節約できる。
論文 参考訳(メタデータ) (2021-05-21T02:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。