MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity
and Degree Descent Criterion
- URL: http://arxiv.org/abs/2312.04067v1
- Date: Thu, 7 Dec 2023 06:19:39 GMT
- Title: MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity
and Degree Descent Criterion
- Authors: Dehua Peng, Zhipeng Gui, Huayi Wu
- Abstract summary: spectral clustering is popular and attractive due to the remarkable performance, easy implementation, and strong adaptability.
We propose MeanCut as the objective function and greedily optimize it in degree descending order for a nondestructive graph partition.
The validity of our algorithm is demonstrated by testifying on real-world benchmarks and application of face recognition.
- Score: 0.6906005491572401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the most typical graph clustering method, spectral clustering is popular
and attractive due to the remarkable performance, easy implementation, and
strong adaptability. Classical spectral clustering measures the edge weights of
graph using pairwise Euclidean-based metric, and solves the optimal graph
partition by relaxing the constraints of indicator matrix and performing
Laplacian decomposition. However, Euclidean-based similarity might cause skew
graph cuts when handling non-spherical data distributions, and the relaxation
strategy introduces information loss. Meanwhile, spectral clustering requires
specifying the number of clusters, which is hard to determine without enough
prior knowledge. In this work, we leverage the path-based similarity to enhance
intra-cluster associations, and propose MeanCut as the objective function and
greedily optimize it in degree descending order for a nondestructive graph
partition. This algorithm enables the identification of arbitrary shaped
clusters and is robust to noise. To reduce the computational complexity of
similarity calculation, we transform optimal path search into generating the
maximum spanning tree (MST), and develop a fast MST (FastMST) algorithm to
further improve its time-efficiency. Moreover, we define a density gradient
factor (DGF) for separating the weakly connected clusters. The validity of our
algorithm is demonstrated by testifying on real-world benchmarks and
application of face recognition. The source code of MeanCut is available at
https://github.com/ZPGuiGroupWhu/MeanCut-Clustering.
Related papers
- Interpretable Multi-View Clustering Based on Anchor Graph Tensor Factorization [64.00146569922028]
Multi-view clustering methods based on anchor graph factorization lack adequate cluster interpretability for the decomposed matrix.
We address this limitation by using non-negative tensor factorization to decompose an anchor graph tensor that combines anchor graphs from multiple views.
arXiv Detail & Related papers (2024-04-01T03:23:55Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More [30.919536115917726]
We present a probabilistic model based on non-negative matrix factorization which unifies clustering and simplification.
By relaxing the hard clustering to a soft clustering, our algorithm relaxes potentially hard clustering problems to a tractable ones.
arXiv Detail & Related papers (2023-08-12T02:47:57Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
A deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink.
By discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner.
The clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss.
Compared to the runner-up, Dink-Net 9.62% achieves NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges.
arXiv Detail & Related papers (2023-05-28T15:33:24Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
We show how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity.
In this paper, we first characterize a novel one-step bipartite graph cut criterion with normalized constraints, and theoretically prove its equivalence to a trace problem.
We extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled.
arXiv Detail & Related papers (2023-05-12T11:27:20Z) - ClusterFuG: Clustering Fully connected Graphs by Multicut [20.254912065749956]
In dense multicut, the clustering objective is given in a factorized form as inner products of node feature vectors.
We show how to rewrite classical greedy algorithms for multicut in our dense setting and how to modify them for greater efficiency and solution quality.
arXiv Detail & Related papers (2023-01-28T11:10:50Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Scaling Graph Clustering with Distributed Sketches [1.1011268090482575]
We present a method inspired by spectral clustering where we instead use matrix sketches derived from random dimension-reducing projections.
We show that our method produces embeddings that yield performant clustering results given a fully-dynamic block model stream.
We also discuss the effects of block model parameters upon the required dimensionality of the subsequent embeddings, and show how random projections could significantly improve the performance of graph clustering in distributed memory.
arXiv Detail & Related papers (2020-07-24T17:38:04Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.