Coherent state switching using vibrational polaritons in an asymmetric
double-well potential
- URL: http://arxiv.org/abs/2312.04298v2
- Date: Wed, 10 Jan 2024 15:59:11 GMT
- Title: Coherent state switching using vibrational polaritons in an asymmetric
double-well potential
- Authors: Lo\"ise Attal, Florent Calvo, Cyril Falvo, Pascal Parneix
- Abstract summary: We investigate the quantum dynamics of vibrational polaritonic states arising from the interaction of a bistable molecule with a Fabry-Perot microcavity.
Two schemes are proposed to achieve this coherent state switching.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum dynamics of vibrational polaritonic states arising from the
interaction of a bistable molecule with the quantized mode of a Fabry-Perot
microcavity is investigated using an asymmetric double-well potential as a
simplified one-dimensional model of a reactive molecule. After discussing the
role of the light-matter coupling strength in the emergence of avoided
crossings between polaritonic states, we investigate the possibility of using
these crossings in order to trigger a dynamical switching of these states from
one potential well to the other. Two schemes are proposed to achieve this
coherent state switching, either by preparing the molecule in an appropriate
vibrational excited state before inserting it into the cavity, or by applying a
short laser pulse inside the cavity to obtain a coherent superposition of
polaritonic states. The respective influences of the dipole amplitude and
potential asymmetry on the coherent switching process are also discussed.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Entangling two exciton modes using exciton optomechanics [4.561414434532408]
We propose to entangle two exciton modes in an exciton-optomechanics system.
The protocol is within reach of current technology and may become a promising approach for preparing excitonic entanglement.
arXiv Detail & Related papers (2024-02-05T04:07:20Z) - Collective rovibronic dynamics of a diatomic gas coupled by cavity [0.0]
We consider an ensemble of homonuclear diatomic molecules coupled to the two polarization directions of a Fabry-P'erot cavity.
We identify a coupling mechanism mediated simultaneously by the two perpendicular polarizations, and inducing polaritonic relaxation towards molecular rotations.
Our simulations indicate that the molecular rotational dynamics in gas-phase cavity-coupled systems can serve as a novel probe for non-radiative polaritonic decay towards the dark-states manifold.
arXiv Detail & Related papers (2024-01-19T14:35:35Z) - Qubit Analog with Polariton Superfluid in an Annular Trap [0.0]
We report on the experimental realization and characterization of a qubit analog with semiconductor exciton-polaritons.
In our system, a condensate of exciton-polaritonsfluid is confined by a spatially-patterned pump laser in an annular trap.
We observe coherent oscillations between a pair of counter-circulating superfluid vortex states of the polaritons coupled by elastic scattering off the laser-imprinted potential.
arXiv Detail & Related papers (2023-08-10T13:13:37Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Enhanced Cavity Optomechanics with Quantum-well Exciton Polaritons [0.0]
microresonators embed quantum wells can host excitonic, optical and mechanical modes at once.
We investigate the case where the system operates in the strong exciton-photon coupling regime.
We predict an enhancement of polariton-phonon interactions by two orders of magnitude with respect to mere optomechanical coupling.
arXiv Detail & Related papers (2022-02-24T13:26:19Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Cavity-induced exciton localisation and polariton blockade in
two-dimensional semiconductors coupled to an electromagnetic resonator [0.0]
Recent experiments have demonstrated strong light-matter coupling between electromagnetic nanoresonators and pristine sheets of two-dimensional semiconductors.
We present a first-principles microscopic quantum theory for the interaction between excitons in an infinite sheet of two-dimensional material and a localised electromagnetic resonator.
We predict that polariton blockade due to nonlinear exciton-exciton interactions is well within reach for nanoresonators coupled to transition-metal dichalcogenides.
arXiv Detail & Related papers (2021-03-26T14:16:34Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.