Equivariant Scalar Fields for Molecular Docking with Fast Fourier Transforms
- URL: http://arxiv.org/abs/2312.04323v2
- Date: Sun, 1 Sep 2024 17:30:48 GMT
- Title: Equivariant Scalar Fields for Molecular Docking with Fast Fourier Transforms
- Authors: Bowen Jing, Tommi Jaakkola, Bonnie Berger,
- Abstract summary: We show how machine learning can learn a scoring function with a functional form that allows for more rapid optimization.
We benchmark our scoring functions on two simplified docking-related tasks: decoy pose scoring and rigid conformer docking.
Our method attains similar but faster performance on crystal structures compared to the widely-used Vina and Gnina scoring functions, and is more robust on predicted structures.
- Score: 11.163940886337798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular docking is critical to structure-based virtual screening, yet the throughput of such workflows is limited by the expensive optimization of scoring functions involved in most docking algorithms. We explore how machine learning can accelerate this process by learning a scoring function with a functional form that allows for more rapid optimization. Specifically, we define the scoring function to be the cross-correlation of multi-channel ligand and protein scalar fields parameterized by equivariant graph neural networks, enabling rapid optimization over rigid-body degrees of freedom with fast Fourier transforms. The runtime of our approach can be amortized at several levels of abstraction, and is particularly favorable for virtual screening settings with a common binding pocket. We benchmark our scoring functions on two simplified docking-related tasks: decoy pose scoring and rigid conformer docking. Our method attains similar but faster performance on crystal structures compared to the widely-used Vina and Gnina scoring functions, and is more robust on computationally predicted structures. Code is available at https://github.com/bjing2016/scalar-fields.
Related papers
- LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones [10.435069781620957]
Research in efficient vision backbones is evolving into models that are a mixture of convolutions and transformer blocks.
We analyze common modules and architectural design choices for backbones not in terms of MACs, but rather in actual throughput and latency.
We combine both macro and micro design to create a new family of hardware-efficient backbone networks called LowFormer.
arXiv Detail & Related papers (2024-09-05T12:18:32Z) - Spectraformer: A Unified Random Feature Framework for Transformer [2.840845885274172]
We introduce Spectraformer, a unified framework for approximating and learning the kernel function in the attention mechanism of the Transformer.<n>Our empirical results demonstrate, for the first time, that a random feature-based approach can achieve performance comparable to top-performing sparse and low-rank methods.
arXiv Detail & Related papers (2024-05-24T07:52:53Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - Learning strides in convolutional neural networks [34.20666933112202]
This work introduces DiffStride, the first downsampling layer with learnable strides.
Experiments on audio and image classification show the generality and effectiveness of our solution.
arXiv Detail & Related papers (2022-02-03T16:03:36Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
We propose a novel way to accelerate attention calculation for Transformers with relative positional encoding (RPE)
Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT)
arXiv Detail & Related papers (2021-06-23T17:51:26Z) - Analytic Filter Function Derivatives for Quantum Optimal Control [0.0]
We focus on the filter function formalism, which allows the computation of gate fidelities in the presence of auto-correlated noise.
We present analytically derived filter function gradients with respect to control pulse amplitudes, and analyze the computational complexity of our results.
arXiv Detail & Related papers (2021-03-16T15:13:58Z) - Self Normalizing Flows [65.73510214694987]
We propose a flexible framework for training normalizing flows by replacing expensive terms in the gradient by learned approximate inverses at each layer.
This reduces the computational complexity of each layer's exact update from $mathcalO(D3)$ to $mathcalO(D2)$.
We show experimentally that such models are remarkably stable and optimize to similar data likelihood values as their exact gradient counterparts.
arXiv Detail & Related papers (2020-11-14T09:51:51Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
We introduce a novel and efficient module called Cascaded Factorized Atrous Spatial Pyramid Pooling (CF-ASPP)
It is a lightweight cascaded structure for Convolutional Neural Networks (CNNs) to efficiently leverage context information.
We achieve 68.4% mIoU at 84 fps on the Cityscapes test set with a single Nivida Titan X (Maxwell) GPU card.
arXiv Detail & Related papers (2020-03-09T03:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.