Analytic Filter Function Derivatives for Quantum Optimal Control
- URL: http://arxiv.org/abs/2103.09126v2
- Date: Mon, 19 Apr 2021 06:58:51 GMT
- Title: Analytic Filter Function Derivatives for Quantum Optimal Control
- Authors: Isabel Nha Minh Le, Julian D. Teske, Tobias Hangleiter, Pascal
Cerfontaine and Hendrik Bluhm
- Abstract summary: We focus on the filter function formalism, which allows the computation of gate fidelities in the presence of auto-correlated noise.
We present analytically derived filter function gradients with respect to control pulse amplitudes, and analyze the computational complexity of our results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Auto-correlated noise appears in many solid state qubit systems and hence
needs to be taken into account when developing gate operations for quantum
information processing. However, explicitly simulating this kind of noise is
often less efficient than approximate methods. Here, we focus on the filter
function formalism, which allows the computation of gate fidelities in the
presence of auto-correlated classical noise. Hence, this formalism can be
combined with optimal control algorithms to design control pulses, which
optimally implement quantum gates. To enable the use of gradient-based
algorithms with fast convergence, we present analytically derived filter
function gradients with respect to control pulse amplitudes, and analyze the
computational complexity of our results. When comparing pulse optimization
using our derivatives to a gradient-free approach, we find that the
gradient-based method is roughly two orders of magnitude faster for our test
cases. We also provide a modular computational implementation compatible with
quantum optimal control packages.
Related papers
- Pulse Engineering via Projection of Response Functions [0.0]
We present an iterative optimal control method of quantum systems, aimed at an implementation of a desired operation with optimal fidelity.
The update step of the method is based on the linear response of the fidelity to the control operators, and its projection onto the mode functions of the corresponding operator.
arXiv Detail & Related papers (2024-04-16T11:02:49Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Reverse engineering of one-qubit filter functions with dynamical
invariants [0.0]
We derive an integral expression for the filter-transfer function of an arbitrary one-qubit gate through the use of dynamical invariant theory and Hamiltonian reverse engineering.
We use this result to define a cost function which can be efficiently optimized to produce one-qubit control pulses that are robust against specified frequency bands of the noise power spectral density.
arXiv Detail & Related papers (2022-04-18T17:59:58Z) - Optimizing quantum control pulses with complex constraints and few
variables through Tensorflow [0.0]
We show how to apply optimal control algorithms on realistic quantum systems by incorporating multiple constraints into the gradient optimization.
We test our algorithm by finding smooth control pulses to implement single-qubit and two-qubit gates for superconducting transmon qubits with always-on interaction.
Our algorithm provides a promising optimal quantum control approach that is friendly to complex and optional physical constraints.
arXiv Detail & Related papers (2021-10-11T14:59:28Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Discrete Adjoints for Accurate Numerical Optimization with Application
to Quantum Control [0.0]
This paper considers the optimal control problem for realizing logical gates in a closed quantum system.
The system is discretized with the Stormer-Verlet scheme, which is a symplectic partitioned Runge-Kutta method.
A parameterization of the control functions based on B-splines with built-in carrier waves is also introduced.
arXiv Detail & Related papers (2020-01-04T00:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.