Generation of entanglement using a short-wavelength seeded free-electron
laser
- URL: http://arxiv.org/abs/2312.04442v2
- Date: Sun, 10 Mar 2024 20:27:13 GMT
- Title: Generation of entanglement using a short-wavelength seeded free-electron
laser
- Authors: Saikat Nandi, Axel Stenquist, Asimina Papoulia, Edvin Olofsson, Laura
Badano, Mattias Bertolino, David Busto, Carlo Callegari, Stefanos
Carlstr\"om, Miltcho B. Danailov, Philipp V. Demekhin, Michele Di Fraia, Per
Eng-Johnsson, Raimund Feifel, Guillaume Gallician, Luca Giannessi, Mathieu
Gisselbrecht, Michele Manfredda, Michael Meyer, Catalin Miron, Jasper
Peschel, Oksana Plekan, Kevin C. Prince, Richard J. Squibb, Marco Zangrando,
Felipe Zapata, Shiyang Zhong, Jan Marcus Dahlstr\"om
- Abstract summary: We investigate entanglement over ultrafast timescales in a bipartite quantum system comprising two massive particles.
Our results unveil the potential for using short-wavelength coherent light pulses from free-electron lasers to generate entangled photoelectron and ion systems.
- Score: 0.46060488407458705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum entanglement between the degrees of freedom encountered in the
classical world is challenging to observe due to the surrounding environment.
To elucidate this issue, we investigate the entanglement generated over
ultrafast timescales in a bipartite quantum system comprising two massive
particles: a free-moving photoelectron, which expands to a mesoscopic
length-scale, and a light-dressed atomic ion, which represents a hybrid state
of light and matter. Although the photoelectron spectra are measured
classically, the entanglement allows us to reveal information about the
dressed-state dynamics of the ion and the femtosecond extreme ultraviolet
pulses delivered by a seeded free-electron laser. The observed generation of
entanglement is interpreted using the time-dependent von Neumann entropy. Our
results unveil the potential for using short-wavelength coherent light pulses
from free-electron lasers to generate entangled photoelectron and ion systems
for studying spooky action at a distance.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Room-temperature optical spin polarization of an electron spin qudit in a vanadyl -- free base porphyrin dimer [35.34500698545813]
Photoexcited organic chromophores appended to molecular qubits can serve as a source of spin initialization or multi-level qudit generation for quantum information applications.
Time-resolved electron paramagnetic resonance (TREPR) experiments carried out at both 85 K and room temperature reveal the formation of a long-lived spin-polarized quartet state.
Exploiting this phenomenon affords the possibility of using photoinduced triplet states in porphyrins for quantum information as a resource to polarize and magnetically couple molecular electronic or nuclear spin qubits and qudits.
arXiv Detail & Related papers (2024-08-04T18:08:20Z) - Free electron topological bound state induced by light beam with a twisted wavefront [1.6285435061281421]
Recent advances in ultrafast electron emission, microscopy, diffraction and coherence have demonstrated a remarkable ability to manipulate free electrons with light beams.
We present a framework for exploring free electron quantum number in ultrafast electron-light interactions.
arXiv Detail & Related papers (2024-01-01T10:50:01Z) - Attosecond imaging of photo-induced dynamics in molecules using
time-resolved photoelectron momentum microscopy [0.0]
We theoretically analyze how spatial and temporal dependence of charge migration in a pentacene molecule can be followed by means of time-resolved photoelectron microscopy.
We demonstrate that the excited-state dynamics of a neutral pentacene molecule in the real space map onto unique features of photoelectron momentum maps.
arXiv Detail & Related papers (2023-01-16T14:47:51Z) - On quantum free-electron laser: Superradience [91.3755431537592]
An exact expression for the evolution of the laser amplitude is obtained.
Reliable conditions for the superradiance of the high-gained laser are discussed.
arXiv Detail & Related papers (2022-03-27T15:07:09Z) - Continuous variable quantum state tomography of photoelectrons [0.490307469564307]
We propose a continuous variable quantum state tomography protocol of electrons which result from the ionization of atoms or molecules by the absorption of extreme ultraviolet light pulses.
Our protocol is benchmarked against a direct calculation of the quantum state of photoelectrons ejected from helium and argon in the vicinity of a Fano resonance.
arXiv Detail & Related papers (2022-02-14T15:33:24Z) - Studying ultrafast Rabi dynamics with a short-wavelength seeded
free-electron laser [0.47783778796967247]
We show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser can drive Rabi oscillations between the ground state and an excited state in helium atoms.
The measured photoemission signal revealed an Autler-Townes doublet as well as an avoided crossing.
Our results offer opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers.
arXiv Detail & Related papers (2022-01-26T14:08:04Z) - Continuum-electron interferometry for enhancement of photoelectron
circular dichroism and measurement of bound, free, and mixed contributions to
chiral response [39.58317527488534]
We develop photoelectron interferometry based on laser-assisted extreme ultraviolet ionization for flexible and robust control of photoelectron circular dichroism in randomly oriented chiral molecules.
A comb of XUV photons ionizes a sample of chiral molecules in the presence of a time-delayed infrared or visible laser pulse promoting interferences between components of the XUV-ionized photoelectron wave packet.
arXiv Detail & Related papers (2021-04-15T15:20:57Z) - Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort
X-ray Pulses in Real Time [0.8523919911999691]
Quantum coherence between electronic states of a photoionized molecule and the resulting process of ultrafast electron-hole migration has been put forward as a possible quantum mechanism of charge-directed reactivity governing the photoionization-induced molecular decomposition.
Here, we use x-rays both to create and to directly probe quantum coherence in the photoionized amino acid glycine.
Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by the photoelectron emission from sequential double photoionization.
arXiv Detail & Related papers (2020-12-09T04:06:12Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.