Diffusion Reflectance Map: Single-Image Stochastic Inverse Rendering of Illumination and Reflectance
- URL: http://arxiv.org/abs/2312.04529v2
- Date: Tue, 26 Mar 2024 09:21:29 GMT
- Title: Diffusion Reflectance Map: Single-Image Stochastic Inverse Rendering of Illumination and Reflectance
- Authors: Yuto Enyo, Ko Nishino,
- Abstract summary: Reflectance bounds the frequency spectrum of illumination in the object appearance.
We introduce the first inverse rendering method, which recovers the attenuated frequency spectrum of an illumination jointly with the reflectance of an object of known geometry.
- Score: 19.20790327389337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reflectance bounds the frequency spectrum of illumination in the object appearance. In this paper, we introduce the first stochastic inverse rendering method, which recovers the attenuated frequency spectrum of an illumination jointly with the reflectance of an object of known geometry from a single image. Our key idea is to solve this blind inverse problem in the reflectance map, an appearance representation invariant to the underlying geometry, by learning to reverse the image formation with a novel diffusion model which we refer to as the Diffusion Reflectance Map Network (DRMNet). Given an observed reflectance map converted and completed from the single input image, DRMNet generates a reflectance map corresponding to a perfect mirror sphere while jointly estimating the reflectance. The forward process can be understood as gradually filtering a natural illumination with lower and lower frequency reflectance and additive Gaussian noise. DRMNet learns to invert this process with two subnetworks, IllNet and RefNet, which work in concert towards this joint estimation. The network is trained on an extensive synthetic dataset and is demonstrated to generalize to real images, showing state-of-the-art accuracy on established datasets.
Related papers
- Planar Reflection-Aware Neural Radiance Fields [32.709468082010126]
We introduce a reflection-aware NeRF that jointly models planar reflectors, such as windows, and explicitly casts reflected rays to capture the source of the high-frequency reflections.
Rendering along the primary ray results in a clean, reflection-free view, while explicitly rendering along the reflected ray allows us to reconstruct highly detailed reflections.
arXiv Detail & Related papers (2024-11-07T18:55:08Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions.
We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios.
We develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW)
arXiv Detail & Related papers (2023-11-29T02:31:10Z) - DeepShaRM: Multi-View Shape and Reflectance Map Recovery Under Unknown
Lighting [35.18426818323455]
We derive a novel multi-view method, DeepShaRM, that achieves state-of-the-art accuracy on this challenging task.
We introduce a novel deep reflectance map estimation network that recovers the camera-view reflectance maps.
A deep shape-from-shading network then updates the geometry estimate expressed with a signed distance function.
arXiv Detail & Related papers (2023-10-26T17:50:10Z) - TraM-NeRF: Tracing Mirror and Near-Perfect Specular Reflections through
Neural Radiance Fields [3.061835990893184]
Implicit representations like Neural Radiance Fields (NeRF) showed impressive results for rendering of complex scenes with fine details.
We present a novel reflection tracing method tailored for the involved volume rendering within NeRF.
We derive efficient strategies for importance sampling and the transmittance computation along rays from only few samples.
arXiv Detail & Related papers (2023-10-16T17:59:56Z) - Ref-NeuS: Ambiguity-Reduced Neural Implicit Surface Learning for
Multi-View Reconstruction with Reflection [24.23826907954389]
Ref-NeuS aims to reduce ambiguity by attenuating the effect of reflective surfaces.
We show that our model achieves high-quality surface reconstruction on reflective surfaces and outperforms the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2023-03-20T03:08:22Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
This paper tackles the task of uncalibrated photometric stereo for 3D object reconstruction.
We propose a new method that jointly optimize object shape, light directions, and light intensities.
Our method demonstrates state-of-the-art accuracy in light estimation and shape recovery on real-world datasets.
arXiv Detail & Related papers (2022-07-16T02:46:15Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
This paper proposes a novel location-aware deep learning-based single image reflection removal method.
We use a reflection confidence map as the cues for the network to learn how to encode the reflection information adaptively.
The integration of location information into the network significantly improves the quality of reflection removal results.
arXiv Detail & Related papers (2020-12-13T19:34:35Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.