論文の概要: Trajeglish: Traffic Modeling as Next-Token Prediction
- arxiv url: http://arxiv.org/abs/2312.04535v2
- Date: Sun, 14 Apr 2024 22:51:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 23:07:44.923201
- Title: Trajeglish: Traffic Modeling as Next-Token Prediction
- Title(参考訳): Trajeglish: 次世代予測としてのトラフィックモデリング
- Authors: Jonah Philion, Xue Bin Peng, Sanja Fidler,
- Abstract要約: 自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
- 参考スコア(独自算出の注目度): 67.28197954427638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs. In pursuit of this functionality, we apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios. Using a simple data-driven tokenization scheme, we discretize trajectories to centimeter-level resolution using a small vocabulary. We then model the multi-agent sequence of discrete motion tokens with a GPT-like encoder-decoder that is autoregressive in time and takes into account intra-timestep interaction between agents. Scenarios sampled from our model exhibit state-of-the-art realism; our model tops the Waymo Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%. We ablate our modeling choices in full autonomy and partial autonomy settings, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes. We additionally evaluate the scalability of our model with respect to parameter count and dataset size, and use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
- Abstract(参考訳): 自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
この機能を追求するために、車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用する。
単純なデータ駆動トークン化方式を用いて,小語彙を用いてトラジェクトリを1cmレベルの分解能に識別する。
次に, GPT型エンコーダデコーダを用いて, エージェント間の時間内相互作用を考慮した, 離散動作トークンのマルチエージェントシーケンスをモデル化する。
我々のモデルはWaymo Sim Agents Benchmarkを上回り、リアリズムメタメトリックを3.3%上回り、インタラクションメトリックを9.9%上回る。
モデリングの選択を完全な自律性と部分的な自律性の設定で改善し、モデルによって学習された表現が、nuSceneのパフォーマンス向上に迅速に適応できることを示します。
さらに,パラメータ数とデータセットサイズに関するモデルのスケーラビリティを評価するとともに,モデルからの密度推定を用いて,交通モデリングタスクにおけるコンテキスト長の正当性と時間内相互作用の定量化を行う。
関連論文リスト
- MotionLM: Multi-Agent Motion Forecasting as Language Modeling [15.317827804763699]
マルチエージェント動作予測のための言語モデルであるMotionLMを提案する。
本手法は,対話的なスコアリングに先立って個々のエージェントの軌道生成を行う,ポストホック相互作用をバイパスする。
モデルの逐次分解は、時間的因果条件のロールアウトを可能にする。
論文 参考訳(メタデータ) (2023-09-28T15:46:25Z) - FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling [20.784555362703294]
自動車追従行動モデリングのための公開ベンチマークデータセットを構築した。
ベンチマークは、5つの公共運転データセットから抽出された80K以上のカーフォローイベントで構成されている。
以上の結果から, DDPGに基づくモデルでは, 間隔の低いMSEと競合する結果が得られた。
論文 参考訳(メタデータ) (2023-05-25T08:59:26Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
本稿では,アクション条件付きビデオ予測のベンチマークを,制御ベンチマークの形式で提案する。
私たちのベンチマークには、11のタスクカテゴリと310のタスクインスタンス定義を備えたシミュレーション環境が含まれています。
次に、ベンチマークを活用して、スケールするモデルサイズ、トレーニングデータの量、モデルアンサンブルの影響を調査します。
論文 参考訳(メタデータ) (2023-04-26T17:59:45Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - A Spatio-Temporal Multilayer Perceptron for Gesture Recognition [70.34489104710366]
自律走行車におけるジェスチャー認識のための多層状態重み付きパーセプトロンを提案する。
提案手法の有望な性能を示すため,TCGおよびDrive&Actデータセットの評価を行った。
私たちは、そのリアルタイム能力と安定した実行を示すために、モデルを自動運転車にデプロイします。
論文 参考訳(メタデータ) (2022-04-25T08:42:47Z) - Predicting Take-over Time for Autonomous Driving with Real-World Data:
Robust Data Augmentation, Models, and Evaluation [11.007092387379076]
我々は、運転者向けカメラビューで動作するコンピュータビジョンアルゴリズムによって作成される中高レベルの機能で動作するテイクオーバー時間(TOT)モデルを開発し、訓練する。
拡張データでサポートされたTOTモデルを用いて,遅延なく連続的なテイクオーバー時間を推定できることを示す。
論文 参考訳(メタデータ) (2021-07-27T16:39:50Z) - Imagining The Road Ahead: Multi-Agent Trajectory Prediction via
Differentiable Simulation [17.953880589741438]
軌道予測のための完全微分可能なシミュレータを用いた深部生成モデルを開発した。
本稿では,標準ニューラルアーキテクチャと標準変動訓練目標を用いて,インタラクションデータセットの最先端の結果を得る。
Imagining the Road Ahead" からモデル ITRA と命名した。
論文 参考訳(メタデータ) (2021-04-22T17:48:08Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。