Large Language Models for Mathematicians
- URL: http://arxiv.org/abs/2312.04556v2
- Date: Tue, 2 Apr 2024 14:35:40 GMT
- Title: Large Language Models for Mathematicians
- Authors: Simon Frieder, Julius Berner, Philipp Petersen, Thomas Lukasiewicz,
- Abstract summary: Large language models (LLMs) have received immense interest for their general-purpose language understanding and, in particular, their ability to generate high-quality text or computer code.
In this note, we discuss to what extent they can aid professional mathematicians.
- Score: 53.27302720305432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) such as ChatGPT have received immense interest for their general-purpose language understanding and, in particular, their ability to generate high-quality text or computer code. For many professions, LLMs represent an invaluable tool that can speed up and improve the quality of work. In this note, we discuss to what extent they can aid professional mathematicians. We first provide a mathematical description of the transformer model used in all modern language models. Based on recent studies, we then outline best practices and potential issues and report on the mathematical abilities of language models. Finally, we shed light on the potential of LLMs to change how mathematicians work.
Related papers
- MathChat: Benchmarking Mathematical Reasoning and Instruction Following in Multi-Turn Interactions [58.57255822646756]
This paper introduces MathChat, a benchmark designed to evaluate large language models (LLMs) across a broader spectrum of mathematical tasks.
We evaluate the performance of various SOTA LLMs on the MathChat benchmark, and we observe that while these models excel in single turn question answering, they significantly underperform in more complex scenarios.
We develop MathChat sync, a synthetic dialogue based math dataset for LLM finetuning, focusing on improving models' interaction and instruction following capabilities in conversations.
arXiv Detail & Related papers (2024-05-29T18:45:55Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning [2.9104279358536647]
We present MathSensei, a tool-augmented large language model for mathematical reasoning.
We study the complementary benefits of the tools - knowledge retriever (Bing Web Search), program generator + executor (Python), and symbolic equation solver (Wolfram-Alpha API)
arXiv Detail & Related papers (2024-02-27T05:50:35Z) - InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning [98.53491178426492]
We open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2.
We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format.
Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning.
arXiv Detail & Related papers (2024-02-09T11:22:08Z) - WizardMath: Empowering Mathematical Reasoning for Large Language Models
via Reinforced Evol-Instruct [128.89645483139236]
We present WizardMath, which enhances the mathematical reasoning abilities of Llama-2, by applying our proposed Reinforcement Learning from Evol-Instruct Feedback (RLEIF) method to the domain of math.
Our model even surpasses ChatGPT-3.5, Claude Instant-1, PaLM-2 and Minerva on GSM8k, simultaneously surpasses Text-davinci, PaLM-1 and GPT-3 on MATH.
arXiv Detail & Related papers (2023-08-18T14:23:21Z) - Large Language Models [0.0]
In these lectures, written for readers with a background in mathematics or physics, we give a brief history and survey of the state of the art.
We then explore some current ideas on how LLMs work and how models trained to predict the next word in a text are able to perform other tasks displaying intelligence.
arXiv Detail & Related papers (2023-07-11T20:21:02Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
We introduce CheckMate, a prototype platform for humans to interact with and evaluate large language models (LLMs)
We conduct a study with CheckMate to evaluate three language models (InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics.
We derive a taxonomy of human behaviours and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness.
arXiv Detail & Related papers (2023-06-02T17:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.