MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark
- URL: http://arxiv.org/abs/2405.12209v1
- Date: Mon, 20 May 2024 17:52:29 GMT
- Title: MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark
- Authors: Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei Zhang, Songyang Zhang, Dahua Lin, Kai Chen,
- Abstract summary: MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
- Score: 82.64129627675123
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in large language models (LLMs) have showcased significant improvements in mathematics. However, traditional math benchmarks like GSM8k offer a unidimensional perspective, falling short in providing a holistic assessment of the LLMs' math capabilities. To address this gap, we introduce MathBench, a new benchmark that rigorously assesses the mathematical capabilities of large language models. MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills. The benchmark progresses through five distinct stages, from basic arithmetic to college mathematics, and is structured to evaluate models at various depths of knowledge. Each stage includes theoretical questions and application problems, allowing us to measure a model's mathematical proficiency and its ability to apply concepts in practical scenarios. MathBench aims to enhance the evaluation of LLMs' mathematical abilities, providing a nuanced view of their knowledge understanding levels and problem solving skills in a bilingual context. The project is released at https://github.com/open-compass/MathBench .
Related papers
- MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHay is an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs.
We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing models.
arXiv Detail & Related papers (2024-10-07T02:30:07Z) - Is Your Model Really A Good Math Reasoner? Evaluating Mathematical Reasoning with Checklist [46.670206614087334]
We argue that if a model really understands a problem, it should be robustly applied across a diverse array of tasks.
MathCheck is a well-designed checklist for testing task generalization and reasoning.
MathCheck better reflects true mathematical abilities and represents mathematical intelligence more linearly.
arXiv Detail & Related papers (2024-07-11T17:58:58Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMath is a fine-grained mathematical evaluation benchmark dataset for assessing Chinese Large Language Models (LLMs)
FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are divided into 17 categories of math word problems.
All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems.
arXiv Detail & Related papers (2024-03-12T15:32:39Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving.
However, their proficiency in solving mathematical problems remains inadequate.
We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data.
arXiv Detail & Related papers (2024-03-05T11:42:59Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - ConceptMath: A Bilingual Concept-wise Benchmark for Measuring
Mathematical Reasoning of Large Language Models [67.32868432113587]
This paper introduces ConceptMath, a fine-grained benchmark that evaluates concept-wise mathematical reasoning of Large Language Models (LLMs)
Unlike traditional benchmarks that evaluate general mathematical reasoning with an average accuracy, ConceptMath systematically organizes math problems under a hierarchy of math concepts.
arXiv Detail & Related papers (2024-02-22T16:06:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.