Testing LLM performance on the Physics GRE: some observations
- URL: http://arxiv.org/abs/2312.04613v1
- Date: Thu, 7 Dec 2023 17:33:12 GMT
- Title: Testing LLM performance on the Physics GRE: some observations
- Authors: Pranav Gupta
- Abstract summary: In this paper, we summarize and analyze the performance of Bard, a popular LLM-based conversational service made available by Google, on the standardized Physics GRE examination.
- Score: 1.3597551064547502
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the recent developments in large language models (LLMs) and their
widespread availability through open source models and/or low-cost APIs,
several exciting products and applications are emerging, many of which are in
the field of STEM educational technology for K-12 and university students.
There is a need to evaluate these powerful language models on several
benchmarks, in order to understand their risks and limitations. In this short
paper, we summarize and analyze the performance of Bard, a popular LLM-based
conversational service made available by Google, on the standardized Physics
GRE examination.
Related papers
- ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios [23.549720214649476]
Large Language Models (LLMs) present transformative opportunities for education, generating numerous novel application scenarios.<n>Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities.<n>We introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings.
arXiv Detail & Related papers (2025-07-27T15:20:19Z) - A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - On-Device Language Models: A Comprehensive Review [26.759861320845467]
Review examines the challenges of deploying computationally expensive large language models on resource-constrained devices.
Paper investigates on-device language models, their efficient architectures, as well as state-of-the-art compression techniques.
Case studies of on-device language models from major mobile manufacturers demonstrate real-world applications and potential benefits.
arXiv Detail & Related papers (2024-08-26T03:33:36Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
Large language models (LLMs) have transformed research and practice across a wide range of domains.
We evaluate the efficiency of open-source LLMs in generating high-quality feedback for programming assignments.
arXiv Detail & Related papers (2024-07-05T21:44:11Z) - On the Evaluation of Large Language Models in Unit Test Generation [16.447000441006814]
Unit testing is an essential activity in software development for verifying the correctness of software components.
The emergence of Large Language Models (LLMs) offers a new direction for automating unit test generation.
arXiv Detail & Related papers (2024-06-26T08:57:03Z) - A Review of Multi-Modal Large Language and Vision Models [1.9685736810241874]
Large Language Models (LLMs) have emerged as a focal point of research and application.
Recently, LLMs have been extended into multi-modal large language models (MM-LLMs)
This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs.
arXiv Detail & Related papers (2024-03-28T15:53:45Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of large language models (LLMs)
We introduce LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python.
It introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores.
arXiv Detail & Related papers (2023-11-13T15:08:59Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.