Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models
- URL: http://arxiv.org/abs/2312.04724v1
- Date: Thu, 7 Dec 2023 22:07:54 GMT
- Title: Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models
- Authors: Manish Bhatt, Sahana Chennabasappa, Cyrus Nikolaidis, Shengye Wan,
Ivan Evtimov, Dominik Gabi, Daniel Song, Faizan Ahmad, Cornelius Aschermann,
Lorenzo Fontana, Sasha Frolov, Ravi Prakash Giri, Dhaval Kapil, Yiannis
Kozyrakis, David LeBlanc, James Milazzo, Aleksandar Straumann, Gabriel
Synnaeve, Varun Vontimitta, Spencer Whitman, Joshua Saxe
- Abstract summary: This paper presents CyberSecEval, a comprehensive benchmark developed to help bolster the cybersecurity of Large Language Models (LLMs) employed as coding assistants.
CyberSecEval provides a thorough evaluation of LLMs in two crucial security domains: their propensity to generate insecure code and their level of compliance when asked to assist in cyberattacks.
- Score: 41.068780235482514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents CyberSecEval, a comprehensive benchmark developed to help
bolster the cybersecurity of Large Language Models (LLMs) employed as coding
assistants. As what we believe to be the most extensive unified cybersecurity
safety benchmark to date, CyberSecEval provides a thorough evaluation of LLMs
in two crucial security domains: their propensity to generate insecure code and
their level of compliance when asked to assist in cyberattacks. Through a case
study involving seven models from the Llama 2, Code Llama, and OpenAI GPT large
language model families, CyberSecEval effectively pinpointed key cybersecurity
risks. More importantly, it offered practical insights for refining these
models. A significant observation from the study was the tendency of more
advanced models to suggest insecure code, highlighting the critical need for
integrating security considerations in the development of sophisticated LLMs.
CyberSecEval, with its automated test case generation and evaluation pipeline
covers a broad scope and equips LLM designers and researchers with a tool to
broadly measure and enhance the cybersecurity safety properties of LLMs,
contributing to the development of more secure AI systems.
Related papers
- CS-Eval: A Comprehensive Large Language Model Benchmark for CyberSecurity [25.07282324266835]
CS-Eval is a benchmark for large language models (LLMs) in cybersecurity.
It synthesizes research hotspots from academia and practical applications from industry.
It organizes high-quality questions into three cognitive levels: knowledge, ability, and application.
arXiv Detail & Related papers (2024-11-25T09:54:42Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [47.11178028457252]
We develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks.
For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation.
For cyberattack helpfulness, we construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment.
arXiv Detail & Related papers (2024-10-14T21:17:22Z) - CyberPal.AI: Empowering LLMs with Expert-Driven Cybersecurity Instructions [0.2999888908665658]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) capabilities, providing versatile capabilities across various applications.
However, their application to complex, domain-specific tasks, such as cyber-security, often faces substantial challenges.
In this study, we introduce SecKnowledge and CyberPal.AI to address these challenges and train security-expert LLMs.
arXiv Detail & Related papers (2024-08-17T22:37:39Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
Large language models (LLMs) have brought significant advancements to code generation and code repair.
However, their training using unsanitized data from open-source repositories, like GitHub, raises the risk of inadvertently propagating security vulnerabilities.
We aim to present a comprehensive study aimed at precisely evaluating and enhancing the security aspects of code LLMs.
arXiv Detail & Related papers (2024-07-02T16:13:21Z) - SECURE: Benchmarking Large Language Models for Cybersecurity [0.6741087029030101]
Large Language Models (LLMs) have demonstrated potential in cybersecurity applications but have also caused lower confidence due to problems like hallucinations and a lack of truthfulness.
Our study evaluates seven state-of-the-art models on these tasks, providing insights into their strengths and weaknesses in cybersecurity contexts.
arXiv Detail & Related papers (2024-05-30T19:35:06Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)
We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.
We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.